The inverse eigenvalue problem for quantum channels
dc.contributor.author | Wolf, Michael | |
dc.contributor.author | Pérez García, David | |
dc.date.accessioned | 2023-06-20T00:04:36Z | |
dc.date.available | 2023-06-20T00:04:36Z | |
dc.date.issued | 2010 | |
dc.description.abstract | Given a list of n complex numbers, when can it be the spectrum of a quantum channel, i.e., a completely positive trace preserving map? We provide an explicit solution for the n=4 case and show that in general the characterization of the non-zero part of the spectrum can essentially be given in terms of its classical counterpart - the non-zero spectrum of a stochastic matrix. A detailed comparison between the classical and quantum case is given. We discuss applications of our findings in the analysis of time-series and correlation functions and provide a general characterization of the peripheral spectrum, i.e., the set of eigenvalues of modulus one. We show that while the peripheral eigen-system has the same structure for all Schwarz maps, the constraints imposed on the rest of the spectrum change immediately if one departs from complete positivity. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Unión Europea. FP7 | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Danish research council (FNU) | |
dc.description.status | submitted | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/12156 | |
dc.identifier.officialurl | http://arxiv.org/abs/1005.4545 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/41898 | |
dc.language.iso | eng | |
dc.relation.projectID | QUEVADIS (233859) | |
dc.relation.projectID | QUITEMAD-CM (S2009/ESP-1594) | |
dc.relation.projectID | (MTM2008-01366) | |
dc.relation.projectID | I-MATH | |
dc.relation.projectID | COQUIT | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Física matemática | |
dc.subject.keyword | Teoría cuántica | |
dc.subject.keyword | Teoría espectral | |
dc.subject.keyword | Quantum Physics | |
dc.subject.keyword | Mathematical Physics | |
dc.subject.keyword | Spectral Theory | |
dc.subject.ucm | Física matemática | |
dc.subject.ucm | Teoría de los quanta | |
dc.subject.unesco | 2210.23 Teoría Cuántica | |
dc.title | The inverse eigenvalue problem for quantum channels | |
dc.type | journal article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5edb2da8-669b-42d1-867d-8fe3144eb216 | |
relation.isAuthorOfPublication.latestForDiscovery | 5edb2da8-669b-42d1-867d-8fe3144eb216 |
Download
Original bundle
1 - 1 of 1