Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Extracting Association Patterns in Network Communications

dc.contributor.authorPortela García-Miguel, Javier
dc.contributor.authorGarcía Villalba, Luis Javier
dc.contributor.authorSilva Trujillo, Alejandra Guadalupe
dc.contributor.authorSandoval Orozco, Ana Lucila
dc.contributor.authorKim, Tai-hoon
dc.date.accessioned2023-06-18T06:06:25Z
dc.date.available2023-06-18T06:06:25Z
dc.date.issued2015-02-11
dc.description.abstractIn network communications, mixes provide protection against observers hiding the appearance of messages, patterns, length and links between senders and receivers. Statistical disclosure attacks aim to reveal the identity of senders and receivers in a communication network setting when it is protected by standard techniques based on mixes. This work aims to develop a global statistical disclosure attack to detect relationships between users. The only information used by the attacker is the number of messages sent and received by each user for each round, the batch of messages grouped by the anonymity system. A new modeling framework based on contingency tables is used. The assumptions are more flexible than those used in the literature, allowing to apply the method to multiple situations automatically, such as email data or social networks data. A classification scheme based on combinatoric solutions of the space of rounds retrieved is developed. Solutions about relationships between users are provided for all pairs of users simultaneously, since the dependence of the data retrieved needs to be addressed in a global sense.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Estudios Estadísticos
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67812
dc.identifier.doi10.3390/s150204052
dc.identifier.issn1424-8220
dc.identifier.officialurlhttps://doi.org/10.3390/s150204052
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/15/2/4052
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23890
dc.issue.number2
dc.journal.titleSensors
dc.language.isoeng
dc.page.final4071
dc.page.initial4052
dc.publisherMDPI
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordanonymity
dc.subject.keywordmixes
dc.subject.keywordnetwork communications
dc.subject.keywordstatistical disclosure attack
dc.subject.ucmRedes
dc.subject.ucmTelecomunicaciones
dc.subject.ucmEstadística
dc.subject.unesco3325 Tecnología de las Telecomunicaciones
dc.subject.unesco1209 Estadística
dc.titleExtracting Association Patterns in Network Communications
dc.typejournal article
dc.volume.number15
dspace.entity.typePublication
relation.isAuthorOfPublication44f935e8-9acf-4613-ab4d-e007edda7540
relation.isAuthorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAuthorOfPublicationdea44425-99a5-4fef-b005-52d0713d0e0d
relation.isAuthorOfPublication.latestForDiscovery44f935e8-9acf-4613-ab4d-e007edda7540

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-15-04052.pdf
Size:
404.63 KB
Format:
Adobe Portable Document Format

Collections