Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Imaging phase segregation in nanoscale LixCoO2 single particles

dc.contributor.authorFuller, Elliot J
dc.contributor.authorAshby, David S
dc.contributor.authorPolop, Celia
dc.contributor.authorSalagre, Elena
dc.contributor.authorBhargava, Bhuvsmita
dc.contributor.authorSong, Yueming
dc.contributor.authorVasco, Enrique
dc.contributor.authorSugar, Joshua D
dc.contributor.authorAlbertus, Paul
dc.contributor.authorMentes, Tevfik Onur
dc.contributor.authorLocatelli, Andrea
dc.contributor.authorSegovia, Pilar
dc.contributor.authorGonzález Barrio, Miguel Ángel
dc.contributor.authorMascaraque Susunaga, Arantzazu
dc.contributor.authorMichel, Enrique G
dc.contributor.authorTalin, A. Alec
dc.date.accessioned2024-12-17T18:03:37Z
dc.date.available2024-12-17T18:03:37Z
dc.date.issued2022
dc.descriptionDE-NA-0003525 DE-SC0021070 PRX19/00486
dc.description.abstractLi xCoO2 (LCO) is a common battery cathode material that has recently emerged as a promising material for other applications including electrocatalysis(1, 2) and as electrochemical random access memory (ECRAM)(3). During charge-discharge cycling LCO exhibits pase transformations that are significantly complicated by electron correlation. While the bulk pase diagram for an ensemble of battery particles has been studied extensively, it remains unclear how these phases scale to nanometer dimensions and the effects of strain and diffusional anisotropy at the single particle scale. Understanding these effects is critical to modeling battery performance and for predicting the scalability and performance of electrocatalysts and ECRAM. Here we investigate isolated, epitaxial LiCoO2 islands grown by pulsed laser deposition (PLD). After electrochemical cycling of the islands, conductive atomic force microscopy (c-AFM) is used to image the spatial distribution of conductive and insulating phases. Above 20 nm island thicknesses, we observe a kinetically arrested state in which the phase boundary is perpendicular to the Li-planes; we propose a model and present image analysis results that show smaller LCO islands have a higher conductive fraction than larger area islands, and the overall conductive fraction is consistent with lithiation state. Thinner islands (14 nm), with a larger surface to volume ratio, are found to exhibit a striping pattern which suggests surface energy can dominate below a critical dimension. When increasing force is applied through the AFM tip to strain the LCO islands, significant shifts in current flow are observed, and underlying mechanisms for this behavior are discussed. The c-AFM images are compared with photoemission electron microscopy (PEEM) images which are used to acquire statistics across hundreds of particles. The results indicate that strain and morphology become more critical to electrochemical performance as particles approach nanometer dimensions.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSandia National Laboratories
dc.description.sponsorshipDepartment of Energy (United States)
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationFuller, E. J.; Ashby, D. S.; Polop, C.; Salagre, E.; Bhargava, B.; Song, Y.; Vasco, E.; Sugar, J. D.; Albertus, P.; Menteş, T. O.; Locatelli, A.; Segovia, P.; Gonzalez-Barrio, M. Á.; Mascaraque, A.; Michel, E. G.; Talin, A. A. Imaging Phase Segregation in Nanoscale Li x CoO2 Single Particles. ACS Nano 2022, 16 (10), 16363–16371. https://doi.org/10.1021/acsnano.2c05594.
dc.identifier.doi10.1021/acsnano.2c05594
dc.identifier.essn1936-086X
dc.identifier.issn1936-0851
dc.identifier.officialurlhttps://doi.org/10.1021/acsnano.2c05594
dc.identifier.relatedurlhttps://pubs.acs.org/doi/full/10.1021/acsnano.2c05594
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112831
dc.issue.number10
dc.journal.titleACS Nano
dc.language.isoeng
dc.page.final16371
dc.page.initial16363
dc.publisherAmerican Chemical Society
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117024GB-C43/ES/NUEVOS MATERIALES PARA UNA CONMUTACION MAGNETICA EFICIENTE EN LA NANOESCALA /
dc.relation.projectIDS2108/NMT4321/NANOMAGCOST
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-82415-R/ES/FISICA DE MOTT PARA NUEVAS APLICACIONES EN COMPUTACION NEUROMORFICA/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/CEX2018-000805-M
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PCI2019-103604
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PCI2019-103594
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/730872/EU
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordIntercalation oxides
dc.subject.keywordConductive atomic force microscopy
dc.subject.keywordPhotoemission electron microscopy
dc.subject.keywordPhase separation
dc.subject.keywordBattery
dc.subject.keywordElectron microscopy
dc.subject.keywordLiCoO2
dc.subject.keywordTransition
dc.subject.keywordIntercalation
dc.subject.keywordLiFePO4
dc.subject.ucmCiencias
dc.subject.unesco22 Física
dc.titleImaging phase segregation in nanoscale LixCoO2 single particles
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number16
dspace.entity.typePublication
relation.isAuthorOfPublication140946f2-3861-43a6-94f2-c36291f901a7
relation.isAuthorOfPublication9d984e3c-69fb-476e-af0b-5134c4d26028
relation.isAuthorOfPublication.latestForDiscovery9d984e3c-69fb-476e-af0b-5134c4d26028

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ACS_Nano_16_16363_2022.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format

Collections