Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Plausibility of a Neural Network Classifier-Based Neuroprosthesis for Depression Detection via Laughter Records

dc.contributor.authorNavarro, Jorge
dc.contributor.authorFernández Rosell, Mercedes
dc.contributor.authorCastellanos, Ángel
dc.contributor.authorMoral, Raquel del
dc.contributor.authorLahoz-Beltrá, Rafael
dc.contributor.authorMarijuán, Pedro C.
dc.date.accessioned2023-06-17T12:45:04Z
dc.date.available2023-06-17T12:45:04Z
dc.date.issued2019-03-21
dc.description.abstractThe present work explores the diagnostic performance for depression of neural network classifiers analyzing the sound structures of laughter as registered from clinical patients and healthy controls. The main methodological novelty of this work is that simple sound variables of laughter are used as inputs, instead of electrophysiological signals or local field potentials (LFPs) or spoken language utterances, which are the usual protocols up-to-date. In the present study, involving 934 laughs from 30 patients and 20 controls, four different neural networks models were tested for sensitivity analysis, and were additionally trained for depression detection. Some elementary sound variables were extracted from the records: timing, fundamental frequency mean, first three formants, average power, and the Shannon-Wiener entropy. In the results obtained, two of the neural networks show a diagnostic discrimination capability of 93.02 and 91.15% respectively, while the third and fourth ones have an 87.96 and 82.40% percentage of success. Remarkably, entropy turns out to be a fundamental variable to distinguish between patients and controls, and this is a significant factor which becomes essential to understand the deep neurocognitive relationships between laughter and depression. In biomedical terms, our neural network classifier-based neuroprosthesis opens up the possibility of applying the same methodology to other mental-health and neuropsychiatric pathologies. Indeed, exploring the application of laughter in the early detection and prognosis of Alzheimer and Parkinson would represent an enticing possibility, both from the biomedical and the computational points of view.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipInstituto de Salud Carlos III (ISCIII) / Fondo de Desarrollo Regional Europeo (FEDER)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/76305
dc.identifier.doi10.3389/fnins.2019.00267
dc.identifier.issn1662-4548, ESSN: 1662-453X
dc.identifier.officialurlhttps://doi.org/10.3389/fnins.2019.00267
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12892
dc.journal.titleFrontiers in Neuroscience
dc.language.isoeng
dc.page.final12
dc.page.initial1
dc.publisherFrontiers Media
dc.relation.projectID(PI12/01480)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu612.8
dc.subject.keywordneuroprosthesis
dc.subject.keywordneural network classifiers
dc.subject.keywordlaughter sound structures
dc.subject.keyworddepression detection
dc.subject.keywordneuropsychiatry
dc.subject.ucmNeurociencias (Medicina)
dc.subject.unesco2490 Neurociencias
dc.titlePlausibility of a Neural Network Classifier-Based Neuroprosthesis for Depression Detection via Laughter Records
dc.typejournal article
dc.volume.number13
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lahoz-Beltra-DBEE-Plausibility.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format

Collections