Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Convergence of polynomial level sets.

dc.contributor.authorFerrera Cuesta, Juan
dc.date.accessioned2023-06-20T16:51:28Z
dc.date.available2023-06-20T16:51:28Z
dc.date.issued1998
dc.description.abstractIn this paper we give a characterization of pointwise and uniform convergence of sequences of homogeneous polynomials on a Banach space by means of the convergence of their level sets. Results are obtained both in the real and the complex cases, as well as some generalizations to the nonhomogeneous case and to holomorphic functions in the complex case. Kuratowski convergence of closed sets is used in order to characterize pointwise convergence. We require uniform convergence of the distance function to get uniform convergence of the sequence of polynomials.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15271
dc.identifier.doi10.1090/S0002-9947-98-02342-3
dc.identifier.issn0002-9947
dc.identifier.officialurlhttp://www.ams.org/journals/tran/1998-350-12/S0002-9947-98-02342-3/S0002-9947-98-02342-3.pdf
dc.identifier.relatedurlhttp://www.ams.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57247
dc.issue.number12
dc.journal.titleTransactions of the American Mathematical Society
dc.language.isoeng
dc.page.final4773.
dc.page.initial4757
dc.publisherAmerican Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu517.986.6
dc.subject.cdu517.518.45
dc.subject.keywordPolynomials in Banach spaces
dc.subject.keywordSet convergence
dc.subject.keywordLevel sets
dc.subject.keywordSequences of homogeneous polynomials on a Banach space
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleConvergence of polynomial level sets.
dc.typejournal article
dc.volume.number350
dcterms.referencesM. Baronti and P. Papini, Convergence of sequences of sets. In Methods of functional analysis in approximation theory, ISNM 76, Birkhäuser, Basel, 1986, pp. 133–155. G. Beer, Convergence of continuous linear functionals and their level sets, Arch. Math. 52 (1989), 482–491. J. M. Borwein and J. Vanderwerff, Dual Kadec-Klee norms and the relationships between Wijsman, slice and Mosco convergence, Michigan Math. J. 41 (1994), 371–387. J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1984. C. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966. J. Llavona, Approximation of continously differentiable functions, North-Holland Math. Studies, vol. 130, North-Holland, Amsterdam, 1986. J. Mujica, Complex analysis in Banach spaces, North-Holland Math. Studies, vol. 120, North-Holland, Amsterdam, 1986.
dspace.entity.typePublication
relation.isAuthorOfPublication1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3
relation.isAuthorOfPublication.latestForDiscovery1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13.pdf
Size:
314.47 KB
Format:
Adobe Portable Document Format

Collections