Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Use of Laughter for the Detection of Parkinson’s Disease: Feasibility Study for Clinical Decision Support Systems, Based on Speech Recognition and Automatic Classification Techniques

dc.contributor.authorTerriza, Miguel
dc.contributor.authorNavarro López, Jorge
dc.contributor.authorRetuerta, Irene
dc.contributor.authorAlfageme López, Nuria
dc.contributor.authorSan Segundo Hernández, Rubén
dc.contributor.authorKontaxakis, George
dc.contributor.authorGarcía Martín, Elena Salobrar
dc.contributor.authorMarijuán Fernández, Pedro C.
dc.contributor.authorPanetsos Petrova, Fivos
dc.date.accessioned2023-06-22T12:53:45Z
dc.date.available2023-06-22T12:53:45Z
dc.date.issued2022-09-01
dc.description.abstractParkinson’s disease (PD) is an incurable neurodegenerative disorder which affects over 10 million people worldwide. Early detection and correct evaluation of the disease is critical for appropriate medication and to slow the advance of the symptoms. In this scenario, it is critical to develop clinical decision support systems contributing to an early, efficient, and reliable diagnosis of this illness. In this paper we present a feasibility study for a clinical decision support system for the diagnosis of PD based on the acoustic characteristics of laughter. Our decision support system is based on laugh analysis with speech recognition methods and automatic classification techniques. We evaluated different cepstral coefficients to identify laugh characteristics of healthy and ill subjects combined with machine learning classification models. The decision support system reached 83% accuracy rate with an AUC value of 0.86 for PD–healthy laughs classification in a database of 20,000 samples randomly generated from a pool of 120 laughs from healthy and PD subjects. Laughter could be employed for the efficient and reliable detection of PD; such a detection system can be achieved using speech recognition and automatic classification techniques; a clinical decision support system can be built using the above techniques. Significance: PD clinical decision support systems for the early detection of the disease will help to improve the efficiency of available and upcoming therapeutic treatments which, in turn, would improve life conditions of the affected people and would decrease costs and efforts in public and private healthcare systems.en
dc.description.departmentUnidad Docente de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/77690
dc.identifier.citationTerriza, M., Navarro López, J., Retuerta, I. et al. «Use of Laughter for the Detection of Parkinson’s Disease: Feasibility Study for Clinical Decision Support Systems, Based on Speech Recognition and Automatic Classification Techniques». International Journal of Environmental Research and Public Health, vol. 19, n.o 17, septiembre de 2022, p. 10884. DOI.org (Crossref), https://doi.org/10.3390/ijerph191710884.
dc.identifier.doi10.3390/ijerph191710884
dc.identifier.issn1660-4601
dc.identifier.officialurlhttps://doi.org/10.3390/ijerph191710884
dc.identifier.relatedurlhttps://www.mdpi.com/1660-4601/19/17/10884
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73302
dc.issue.number17
dc.issue.number10884
dc.journal.titleInternational Journal of Environmental Research and Public Health
dc.language.isoeng
dc.page.total15
dc.publisherMDPI
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.cdu616.858:004.8
dc.subject.cdu004.93'1
dc.subject.keywordmachine learning
dc.subject.keywordParkinson´s disease
dc.subject.keywordPD
dc.subject.keywordBiomarker
dc.subject.keywordLaugh
dc.subject.keywordClinical decision support systems
dc.subject.keywordAutomatic classification techniques
dc.subject.keywordArtificial intelligence
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmInformática médica y telemedicina
dc.subject.ucmNeurociencias (Medicina)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco2490 Neurociencias
dc.titleUse of Laughter for the Detection of Parkinson’s Disease: Feasibility Study for Clinical Decision Support Systems, Based on Speech Recognition and Automatic Classification Techniquesen
dc.typejournal article
dc.volume.number19
dspace.entity.typePublication
relation.isAuthorOfPublication554437df-fa3d-41e1-862c-bcdda1dbd67a
relation.isAuthorOfPublication1279018d-18b3-4bb8-b291-d43947d907b2
relation.isAuthorOfPublication.latestForDiscovery1279018d-18b3-4bb8-b291-d43947d907b2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ijerph-19-10884.pdf
Size:
4.77 MB
Format:
Adobe Portable Document Format

Collections