Perturbed smooth Lipschitz extensions of uniformly continuous functions on Banach spaces
dc.contributor.author | Azagra Rueda, Daniel | |
dc.contributor.author | Fry, Robb | |
dc.contributor.author | Montesinos Matilla, Luis Alejandro | |
dc.date.accessioned | 2023-06-20T09:30:42Z | |
dc.date.available | 2023-06-20T09:30:42Z | |
dc.date.issued | 2004-10-21 | |
dc.description.abstract | We show that if Y is a separable subspace of a Banach space X such that both X and the quotient X/Y have C-p-smooth Lipschitz bump functions, and U is a bounded open subset of X, then, for every uniformly continuous function f : Y boolean AND U --> R and every epsilon > 0, there exists a C-p-smooth Lipschitz function F : X --> R such that |F(y)- f( y)| less than or equal to epsilon for every y is an element of Y boolean AND U. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/13962 | |
dc.identifier.doi | 10.1090/S0002-9939-04-07715-9 | |
dc.identifier.issn | 1088-6826 | |
dc.identifier.officialurl | http://www.ams.org/proc/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49770 | |
dc.issue.number | 3 | |
dc.journal.title | Proceedings of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 734 | |
dc.page.initial | 727 | |
dc.publisher | America Mathematical Society | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.98 | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Perturbed smooth Lipschitz extensions of uniformly continuous functions on Banach spaces | |
dc.type | journal article | |
dc.volume.number | 133 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 | |
relation.isAuthorOfPublication.latestForDiscovery | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 |
Download
Original bundle
1 - 1 of 1