UV-photografting modification of NF membrane surface for NOM fouling reduction

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Taylor & Francis Inc
Google Scholar
Research Projects
Organizational Units
Journal Issue
Fouling of natural organic matter is one of the common problems in water treatment plant. Despite physical and chemical treatment normally used to recover the flux loss, membrane surface properties also not less important to be considered. In this study, UV-photografting technique was applied to modify commercial nanofiltration (NF) membrane surface in order to reduce fouling tendency. Neutral hydrophilic N-vinylpyrrolidone has been chosen as the monomer for the UV-photografting. The result revealed that the grafted membrane at optimum conditions exhibits low humic acid fouling tendency compared with the unmodified membrane. In addition, both the unmodified and the UV-grafted polyethersulfone NF membranes were characterized in terms of structural properties (pore size, r(p,) and ratio of membrane thickness to porosity, x/A(k)) using Pore Model in order to evaluate the effect of UV-photografting modification on structural parameters and indirectly influence the membrane performance and fouling as well.
© 2013 The Authors. Published by Taylor & Francis.
UCM subjects
Unesco subjects
[1] M.N. Abu Seman, M. Khayet, N. Hilal, Development of antifouling properties and performance of nanofiltration membranes modified by interfacial polymerisation, Desalination 273 (2011) 36–47. [2] M.N. Abu Seman, M. Khayet, N. Hilal, Nanofiltration thinfilm composite polyester polyethersulfone-based membranes prepared by interfacial polymerization, J. Membr. Sci. 348 (2010) 109–116. [3] H. Chen, G. Belfort, Surface modification of poly(ether sulfone) ultrafiltration membranes by low-temperature plasmainduced graft polymerization, J. Appl. Poly. Sci. 72 (1999) 1699–1711. [4] M. Ulbricht, G. Belfort, Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone, J. Membr. Sci. 111 (1996) 193–215. [5] R. Chennamsetty, I. Escobar, Evolution of polysulfone nanofiltration membrane following ion beam irradiation, Langmuir 24 (2008) 5569–5579. [6] A. Linggawati, A.W. Mohammad, Z. Ghazali, Effect of electron beam irradiation on morphology and sieving characteristics of nylon-66 membranes, Eur. Poly. J. 45 (2009) 2797–2804. [7] V. Freger, J. Gilron, S. Belfer, TFC polyamide membranes modified by grafting of hydrophilic polymers: An FT-IR/AFM/TEM study, J. Membr. Sci. 209 (2002) 283–292. [8] T. Carroll, N.A. Booker, J. Meier-Haack, Polyelectrolytegrafted microfiltration membranes to control fouling by natural organic matter in drinking water, J. Membr. Sci. 203 (2002) 3–13. [9] H. Susanto, H. Arafat, E.M.L. Janssen, M. Ulbricht, Ultrafiltration of polysaccharide-protein mixtures: Elucidation of fouling mechanisms and fouling control by membrane surface modification, Sep. Purif. Technol. 63 (2008) 558–565. [10] A.H.M. Yusof, M. Ulbricht, Polypropylene-based membrane adsorbers via photo-initiated graft copolymerization: Optimizing separation performance by preparation conditions, J. Membr. Sci. 311 (2008) 294–305. [11] M. Taniguchi, G. Belfort, Low protein fouling synthetic membranes by UV-assisted surface grafting modification: Varying monomer type, J. Membr. Sci. 231 (2004) 147–157. [12] J. Pieracci, D.W. Wood, J.V. Crivello, G. Belfort, Increasing membrane permeability of UV-modified poly(ether sulfone) ultrafiltration membranes, J. Membr. Sci. 202 (2002) 1–16. [13] V. Kochkodan, N. Hilal, V. Melnik, Selective recognition of organic pollutants in aqueous solutions with composite imprinted membranes, Adv. Colloid Interface Sci. 159 (2010) 180–188. [14] N. Hilal, L. Al-Khatib, B.P. Atkin, V. Kochkodan, N. Potapchenko, Photochemical modification of membrane surfaces for (bio)fouling reduction: A nano-scale study using AFM, Desalination 158 (2003) 65–72. [15] Y. Uyama, K. Kato, Y. Ikada, Surface modification of polymers by grafting, Adv. Poly. Sci. 137 (1998) 1–39. [16] M. Khayet, M.N. Abu Seman, N. Hilal, Response surface modeling and optimization of composite nanofiltration modified membranes, J. Membr. Sci. 349 (2010) 113–122. [17] M.N. Abu Seman, M. Khayet, Z.I. Bin Ali, N. Hilal, Reduction of nanofiltration membrane fouling by UV-initiated graft polymerization technique, J. Membr. Sci. 355 (2011) 133–141. [18] M.N. Abu Seman, M. Khayet, N. Hilal, Comparison of two different UV-grafted nanofiltration membranes prepared for reduction of humic acid fouling using acrylic acid and Nvinylpyrrolidone, Desalination 287 (2012) 19–29. [19] M. Mulder, Basic Principles of Membrane Technology, second ed., Kluwer Academic, Dordrecht, 2000. [20] K.Y. Wang, T.S. Chung, The characterization of flat composite nanofiltration membranes and their applications in the separation of Cephalexin, J. Membr. Sci. 247 (2005) 37–50. [21] W.R. Bowen, S.Y. Cheng, T.A. Doneva, D.L. Oatley, Manufacture and characterisation of polyetherimide/sulfonated poly (ether ether ketone) blend membranes, J. Membr. Sci. 250 (2005) 1–10. [22] Schaep, J. Nanofiltration for the removal of ionic components from water. PhD Thesis. Belgium: Katholieke Universiteit Leuven; (1999). [23] Y. Kiso, K. Muroshige, T. Oguchi, T. Yamada, M. Hhirose, T. Ohara, T. Shintani, Effect of molecular shape on rejection of uncharged organic compounds by nanofiltration membranes and on calculated pore radii, J. Membr. Sci. 358 (2010) 101–113. [24] W.R. Bowen, A.W. Mohammad, Characterization and prediction of nanofiltration membrane performance- A general assessment. I. Chem. E. 76 Part A (1998) 885–893. [25] W.M. Deen, Hindered transport of large molecules in liquid filled pores, AIChE J. 33 (1987) 1409–1425. [26] M. Mänttäri, L. Puro, J. Nuortila-Jokinen, M. Nyström, Fouling effects of polysaccharides and humic acid in nanofiltration, J. Membr. Sci. 165 (2000) 1–17. [27] M. Mänttäri, M. Nyström, Critical flux in NF of high molar mass polysaccharides and effluents from the paper industry, J. Membr. Sci. 170 (2000) 257–273. [28] N. Hilal, W.R. Bowen, L. Alkhatib, O. Ogunbiyi, A review of atomic microscopy applied to cell interactions with membrane, Trans. IChemE A Chem. Eng. Res. Des.84 (A4) (2006) 282–292. [29] W.R. Bowen, N. Hilal, R.W. Lovitt, C.J. Wright, Characterisation of membrane surfaces: Direct measurement of biological adhesion using an atomic force microscope, J. Membr. Sci. 154 (1999) 205–212. [30] S. Hong, M. Elimelech, Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes, J. Membr. Sci. 132 (1997) 159–181.