Computational Analysis of a Spiral Thermoelectric Nanoantenna for Solar Energy Harvesting Applications

Research Projects
Organizational Units
Journal Issue
Thermo-electrical nanoantennas have been proposed as an alternative option for conversion solar energy harvesting applications. In this work, the response of a spiral broadband antenna has been obtained from numerical and theoretical simulations perspectives. The results show that this device exhibits a responsivity of 20mV/W under 117W/cm2, for a single-frequency radiation. We discuss strategies for enhanced efficiency.
Conferencia presentada en la 8th European Conference on Antennas and Propagation, 6-11 April 2014, the Hague, Netherlands.
[1] L. Novotny and N. van Hulst, "Antennas for light," Nat. Photonics,vol. 5, pp. 83-90, 2011. [2] C. Fumeaux, W. Herrmann, F. Kneubühl and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technology, vol. 39, pp. 123-183, 1998. [3] F.J. González and G. Boreman, “Comparison of Dipole, Bowtie, Spiral and Log-periodic IR Antennas,” Infrared Phys. Technology, vol. 46(5), pp. 418-428, 2005. [4] Z. Ma and G.A.E. Vandenbosch, "Optimal solar energy harvesting efficiency of nano-rectenna systems," Solar Energy, vol. 88, pp. 163-174, January 2013. [5] G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas” Nano Energy, vol. 1, pp. 494-502, 2012. [6] V.E. Ferry, L.A. Sweatlock, D. Pacifici and H.A. Atwater, "Plasmonic nanostructure design for efficient light coupling," Nano Lett., vol. 8(12), pp. 4391-4397, 2008. [7] D.K. Kotter, S.D. Novack, W.D. Slafer and P.J. Pinhero, “Theory and manufacturing processes of Solar Nanoantenna Electromagnetic Collectors," J. Sol. Energy Eng., vol. 132(1), pp.011014(9 pages), January 2010. [8] R. Corkish, M.A. Green and T. Puzzer, "Solar energy collection by antennas," Sol. Energy, vol. 73, pp. 395-401, 2002. [9] J.A. Bean, B. Tiwari, G.H. Bernstein, P. Fay and W. Porod, “Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B, vol. 27(1), pp. 11-14, 2009. [10] S. Rockwell, D. Lim, B.A. Bosco, J.H. Baker, B. Eliasson, K. Forsyth and M. Cromar, “Characterization and modeling of metal/doubleinsulator/metal diodes for millimeter wave wireless receiver applications," in Radio Frequency Integrated Circuits Symposium, pp. 171-174, 2007. [11] W. Fan, M.C. Dolph, J. Lu and A. Wolf, “Metal-oxide-oxide-metal granular tunnel diodes fabricated by anodization," Appl. Phys. Lett., vol. 99, pp. 252101(3 pages), 2011. [12] J.N. Schulman and D. H. Chow, “Sb-Heterostructure Interband Backward Diodes,” IEEE Electron. Dev. Lett., vol. 21(7), pp. 353-355, 2000. [13] Z. Zhu, S. Joshi, S. Grover, and G. Moddel, Graphene Geometric Diodes for Terahertz Rectennas,” J. Phys. D: Appl. Phys., vol. 46, pp. 185101, 2013. [14] E. Briones, J. Alda and F.J. González, "Conversion efficiency of broadband rectennas for solar energy harvesting applications," Optics Express, vol. 21, Issue S3, pp. A412-A418 April 2013. [15] A. Graf, M. Arndt, M. Sauer and G. Gerlach, "Review of micromachined thermopiles for infrared detection," Meas. Sci. Technol., vol. 18, pp. R59–R75, 2007. [16] P.M. krenz, B.T. Tiwari, G.P. Szakmany, A.O. Orlov, F.G. González and G.D. Boreman, "Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching," J. Quantum Electron., vol. 48(5), pp. 659-664, May 2012. [17] G.P. Szakmany, P.M. Krenz, A.O. Orlov, G.H. Bernstein and W. Porod, "Antenna-Coupled Nanowire Thermocouples for Infrared Detection," IEEE Trans. Nanotechnol., vol. 12(2), pp. 163-167, March 2013. [18] A.F. Ioffe and A. Gelbtuch, Semiconductor Thermoelements and Thermoelectric Cooling, 1st edition, Infosearch, 1957. [19] E.D. Palik, Handbook of Optical Constants of Solids, 1st edition, Academic Press, 1985. [20] G. Baffou, C. Girard and R. Quidant, "Mapping Heat Origin in Plasmonic Structures," Phys. Rev. Lett., vol. 104, pp. 136805(4pages), 2010. [21] W. Ma and X. Zhang, "Study of the thermal, electrical and thermoelectric properties of metallic nanofilms," International Journal of Heat and Mass Transfer, vol. 58, pp. 639-651, March 2013. [22] F.J. González, "Thermal-impedance simulations of antenna-coupled microbolometers," Infrared Phys. Technol., vol. 48, pp. 223–226, 2005.