¿Cómo influyen las medidas de control y los cambios del entorno en la evolución de la epidemia de COVID-19 en Hubei?
Loading...
Official URL
Full text at PDC
Publication date
2020
Defense date
2020
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Facultad de Estudios Estadísticos
Citation
Abstract
A lo largo de la historia, las epidemias han sido grandes dificultades que los seres humanos hemos tenido que superar, ya que enfermedades como la viruela, el sarampión o la gripe española causaron un gran número de muertes en todo el mundo. El inter ́es por estudiarlas matemáticamente dio lugar a los modelos epidemiológicos, convertidos junto a la simulación en herramientas fundamentales para predecir el desarrollo de enfermedades contagiosas. La más reciente y que se ha extendido por gran parte de los países, es la causada por el coronavirus SARS-CoV 2 que fue detectado a finales del 2019 en la ciudad china de Wuhan, provincia de Hubei.
Tomando como ejemplo el caso de la COVID-19 en Hubei, se ha implementado un modelo determinista de tipo SEIR para estudiar las características del brote epidémico y predecir su evolución futura bajo tres escenarios diferentes. En un primer caso, se ha simulado la propagación de la epidemia sin tomar ningún tipo de medidas de control y se ha comprobado, en un segundo escenario, que medidas como el confinamiento o la cancelación de vuelos, ayudan a controlar la propagación de la epidemia sin conseguir que la enfermedad desaparezca.
Por último, se ha querido comprobar cómo influyen los cambios del entorno en la evolución de una epidemia y para describir la situación ambiental de cada día, se han utilizado un par de cadenas de Markov distintas que, a largo plazo, presentan el mismo comportamiento.
Throughout history, humans have had to overcome great difficulties when dealing with an epidemic. Diseases such as smallpox, measles or the Spanish flu have caused a large number of deaths around the world. The interest in studying them mathematically has given a rise to epidemiological models which along with simulation has become fundamental tools for predicting the development of contagious diseases. The most recent disease that has spread to a large part of the world, is the one caused by the SARS-CoV 2 coronavirus. This was detected at the end of 2019 in the Chinese city of Wuhan, Hubei province. Using real information of COVID-19 outbreak, in Hubei, a deterministic SEIR-type model has been implemented to study characteristics of the epide- mic outbreak and predict its future evolution under three different scenarios. In the first scenario, the spread of the epidemic has been simulated without taking any type of control measures. In the second scenario, it has been found that measures such as confinement or flight cancellation help to control the spread of the epidemic without making the disease disappear. Finally in the third scenario, we have tried to verify how changes in the environment can influence the evolution of an epidemic. To describe the environmental situa- tion of each day, different Markov chains with the same long-term behaviour, have been considered.
Throughout history, humans have had to overcome great difficulties when dealing with an epidemic. Diseases such as smallpox, measles or the Spanish flu have caused a large number of deaths around the world. The interest in studying them mathematically has given a rise to epidemiological models which along with simulation has become fundamental tools for predicting the development of contagious diseases. The most recent disease that has spread to a large part of the world, is the one caused by the SARS-CoV 2 coronavirus. This was detected at the end of 2019 in the Chinese city of Wuhan, Hubei province. Using real information of COVID-19 outbreak, in Hubei, a deterministic SEIR-type model has been implemented to study characteristics of the epide- mic outbreak and predict its future evolution under three different scenarios. In the first scenario, the spread of the epidemic has been simulated without taking any type of control measures. In the second scenario, it has been found that measures such as confinement or flight cancellation help to control the spread of the epidemic without making the disease disappear. Finally in the third scenario, we have tried to verify how changes in the environment can influence the evolution of an epidemic. To describe the environmental situa- tion of each day, different Markov chains with the same long-term behaviour, have been considered.