Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Temperature effects on the electrical properties and structure of interfacial and bulk defects in Al/SiNx : H/Si devices

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorPrado Millán, Álvaro Del
dc.contributor.authorSan Andrés Serrano, Enrique
dc.date.accessioned2023-06-20T19:00:52Z
dc.date.available2023-06-20T19:00:52Z
dc.date.issued2001-08-01
dc.description© 2001 American Institute of Physics. The authors wish to express our gratitude to Dr. W. Bohne, Dr. J. Röhrich, and Dr. B. Selle, from the Hahn-Meitner-Institut in Berlin, for a long friendship and fruitful collaboration, from which the HIERDA results presented in this work are only a small part. They also thank the financial support of the Spanish National Office for Science and Technology under Grant No. TIC98/0740 and the technical assistance received from the ion implantation facility “CAI-Implantación Iónica” of the University of Madrid.
dc.description.abstractBulk properties of SiNx:H thin film dielectrics and interface characteristics of SiNx:H/Si devices are studied by a combination of electrical measurements (capacitance-voltage and current-voltage characteristics) and defect spectroscopy (electron spin resonance). The SiNx:H films were deposited by an electron cyclotron resonance plasma method and subjected to rapid thermal annealing postdeposition treatments at temperatures between 300 and 1050 degreesC for 30 s. It is found that the response of the dielectric to the thermal treatments is strongly affected by its nitrogen to silicon ratio (N/Si=x) being above or below the percolation threshold of the Si-Si bonds in the SiNx:H lattice, and by the amount and distribution of the hydrogen content. The density of Si dangling bond defects decreases at moderate annealing temperatures (below 600 degreesC) in one order of magnitude for the compositions above the percolation threshold (nitrogen rich, x=1.55, and near stoichiometric, x=1.43). For the nitrogen rich films, a good correlation exists between the Si dangling bond density and the interface trap density, obtained from the capacitance measurements. This suggests that the observed behavior is mainly determined by the removal of states from the band tails associated to Si-Si weak bonds, because of the thermal relaxation of the bonding strain. At higher annealing temperatures the deterioration of the electrical properties and the increase of the Si dangling bonds seem to be associated with a release of trapped hydrogen from microvoids of the structure. For the silicon rich samples rigidity percolates in the network resulting in a rigid and strained structure for which the degradation phenomena starts at lower temperatures than for the other two types of samples.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish National Office for Science and Technology
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26253
dc.identifier.doi10.1063/1.1380992
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.1380992
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59107
dc.issue.number3
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.page.final1581
dc.page.initial1573
dc.publisherAmerican Institute of Physics
dc.relation.projectIDTIC98/0740
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordChemical-Vapor-Deposition
dc.subject.keywordAmorphous-Silicon Nitride
dc.subject.keywordSiNx-H Films
dc.subject.keywordInsulator-Semiconductor Structures
dc.subject.keywordNitrogen Dangling-Bons
dc.subject.keywordDominant Deep Trap
dc.subject.keywordCyclotron-Resonance
dc.subject.keywordGate Dielectrics
dc.subject.keywordInfrared-Spectroscopy
dc.subject.keywordCorrelation-Energy.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleTemperature effects on the electrical properties and structure of interfacial and bulk defects in Al/SiNx : H/Si devices
dc.typejournal article
dc.volume.number90
dcterms.references1) J. Kanicki, F. R. Libsch, J. Griffith, and R. Polastre, J. Appl. Phys., 69, 2339 (1991). 2) H. C. Cheng, H. W. Liu, H. P. Su, and G. Hong, IEEE Electron Device Lett., 16, 509 (1995). 3) J. Schmidt and A. G. Aberle, J. Appl. Phys., 85, 3626(1999). 4) Y. Wu and G. Lucovsky, IEEE Electron Device Lett., 19, 367 (1998). 5) W. Lu, X. W. Wang, R. Hammond, A. Kuliev, S. Koester, J. O. Chu, K. Ismail, T. P. Ma, and I. Adesida, IEEE Electron Device Lett., 20, 514 (1999). 6) H. Y. Yang, H. Niimi, and G. Lucovsky, J. Appl. Phys., 83, 2327 (1998). 7) Y. Wu, Y. Lee, and G. Lucovsky, IEEE Electron Device Lett., 21, 116 (2000). 8) D. T. Krick, P. M. Lenahan, and J. Kanicki, Phys. Rev. B, 38, 8226 (1988). 9) W. L. Warren, J. Kanicki, J. Robertson, E. H. Poindexter, and P. J. McWhorter, J. Appl. Phys., 74, 4034 (1993). 10) W. Warren, P. M. Lenahan, and S. E. Curry, Phys. Rev. Lett., 65, 207 (1990). 11) W. L. Warren, J. Kanicki, J. Robertson, and P. M. Lenahan, Appl. Phys. Lett., 59, 1699 (1991). 12) M. C. Hugon, F. Delmotte, B. Agius, and J. L. Courant, J. Vac. Sci. Technol. A, 15, 3143 (1997). 13) M. Tao, D. Park, N. Mohammad, D. Li, A. Botchkerav, and H. Morkoc, Philos. Mag. B, 73, 723 (1996). 14) D. Landheer, K. Rajesh, D. Masson, J. E. Hulse, G. I. Sproule, and T. Quance, J. Vac. Sci. Technol. A, 16, 2931 (1998). 15) S. C. Witczak, J. S. Suehle, and M. Gaitan, Solid-State Electron., 35, 345 (1992). 16) E. H. Nicollian and J. R. Brews, MOS (Metal–Oxide–Semiconductor) Physics and Technology (Wiley, New York, 982). 17) E. H. Nicollian and A. Goetzberger, Bell Syst. Tech. J., 46, 1055 1967. 18) G. Lucovsky, Y. Wu, H. Niimi, V. Misra, and J. C. Phillips, Appl. Phys. Lett., 74, 2005 (1999). 19) S. García, I. Mártil, G. González Díaz, E. Castán, S. Dueñas, and M. Fernández, J. Appl. Phys., 83, 332 (1998). 20) A. Kapila and V. Malhotra, Appl. Phys. Lett., 62, 1009 (1993). 21) K. Vaccaro, H. M. Dauplaise, A. Davis, S. M. Spaziani, and J. P. Lorenzo, Appl. Phys. Lett., 87, 527 (1995). 22) D. G. Park, J. C. Reed, and H. Morkoc, Appl. Phys. Lett., 71, 1210 (1997). 23) E. H. Poindexter, G. J. Gerardi, M. E. Rueckel, P. J. Caplan, N. M. Johnson, and D. K. Biegelsen, J. Appl. Phys., 56, 2844 (1984). 24) A. Stesmans, Semicond. Sci. Technol., 4, 1000 (1989). 25) D. Jousse, J. Kanicki, and J. H. Stathis, Appl. Phys. Lett., 54, 1043 (1989). 26) J. R. Elmiger and M. Kunst, Appl. Phys. Lett., 69, 517 (1996). 27) Z. Lu, S. S. He, Y. Ma, and G. Lucovsky, J. Non-Cryst. Solids, 187, 340 (1995). 28) Z. Jing, G. Lucovsky, and J. L. Whitten, J. Vac. Sci. Technol. B, 13, 1613 (1995). 29) Z. Lu, P. Santos-Filho, G. Stevens, M. J. Williams, and G. Lucovsky, J. Vac. Sci. Technol. A, 13, 607 (1995). 30) F. L. Martínez, I. Mártil, G. González-Díaz, B. Selle, and I. Sieber, J. Non-Cryst. Solids, 227–230, 523 (1998). 31) W. A. Lanford and M. J. Rand, J. Appl. Phys., 49, 2473 (1978). 32) R. E. Norberg, D. J. Leopold, and P. A. Fedders, J. Non-Cryst. Solids, 227–230, 124 (1998). 33) H. J. Stein, S. M. Myers, and D. M. Follstaedt, J. Appl. Phys., 73, 2755 (1993). 34) W. Bohne, J. Röhrich, and G. Röschert, Nucl. Instrum. Methods Phys. Res. B, 136–138, 633 (1998). 35) F. L. Martínez, Á. del Prado, D. Bravo, F. López, I. Mártil, and G. González-Díaz, J. Vac. Sci. Technol. A, 17, 1280 (1999). 36) F. L. Martínez, Á. del Prado, I. Mártil, D. Bravo, and F. J. López, J. Appl. Phys., 88, 2149 (2000). 37) P. M. Lenahan, D. T. Krick, and J. Kanicki, Appl. Surf. Sci., 39, 392 (1989). 38) S. E. Curry, P. M. Lenahan, D. T. Krick, J. Kanicki, and C. T. Kirk, Appl. Phys. Lett., 56, 1359 (1990). 39) J. Robertson, Philos. Mag. B, 63, 47 (1991). 40) F. L. Martínez, Á. del Prado, I. Mártil, G. González-Díaz, B. Selle, and I. Sieber, J. Appl. Phys., 86, 2055 (1999). 41) Y. Ma, T. Yasuda, and G. Lucovsky, J. Vac. Sci. Technol. B, 11, 1533 (1993). 42) W. Bohne, W. Fuhs, J. Röhrich, B. Selle, G. González Díaz, I. Mártil, F. L. Martínez, and Á. del Prado, Surf. Interface Anal., 30, 534 (2000). 43) K. Zellama, L. Chahed, P. Slàdek, M. L. Théye, J. H. Von Bardeleben, and P. Roca i Cabarrocas, Phys. Rev. B, 53, 3804 (1996).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication21e27519-52b3-488f-9a2a-b4851af89a71
relation.isAuthorOfPublication.latestForDiscovery21e27519-52b3-488f-9a2a-b4851af89a71

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,66libre.pdf
Size:
271.62 KB
Format:
Adobe Portable Document Format

Collections