Publication:
Sample-to-sample fluctuations of the overlap distributions in the three-dimensional Edwards-Anderson spin glass

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-11-20
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the sample-to-sample fluctuations of the overlap probability densities from large-scale equilibrium simulations of the three-dimensional Edwards-Anderson spin glass below the critical temperature. Ultrametricity, stochastic stability, and overlap equivalence impose constraints on the moments of the overlap probability densities that can be tested against numerical data. We found small deviations from the Ghirlanda Guerra predictions, which get smaller as system size increases. We also focus on the shape of the overlap distribution, comparing the numerical data to a mean-field-like prediction in which finite-size effects are taken into account by substituting delta functions with broad peaks.
Description
© 2011 American Physical Society. Artículo firmado por 23 autores. Janus has been funded by European Union (Fondo Europeo de Desarrollo Regional) funds, by Diputación General de Aragón (Spain), by a Microsoft Award-Sapienza-Italy, and by Eurotech. We acknowledge partial financial support from Ministerio de Ciencia e Innovación, Spain (Contracts No. FIS2009-12648-C03, No. FIS2010-16587, and No. TEC2010- 19207), Junta de Extremadura (GR10158), UEx (ACCVII-08), and from UCM-Banco de Santander (GR32/10-A/910383). D. Íñiguez is supported by the Government of Aragon through a Fundación ARAID contract. B. Seoane and D. Yllanes are supported by the Formación del Profesorado Universitario program (Ministerio de Educación, Spain).
Unesco subjects
Keywords
Citation
1) D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett., 35, 1792 (1975). 2) G. Parisi, J. Phys. A: Math. Gen., 13, 1101 (1980). 3) M. Mézard, G. Parisi, M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987). 4) D. S. Fisher, D. A. Huse, Phys. Rev. Lett., 56, 1601 (1986) -- ibid, Phys. Rev. B, 38, 373 (1988) --- ibid, 38, 386 (1988). 5) E. Marinari, G. Parisi, F. Ricci-Tersenghi, J. J. Ruiz Lorenzo, F. Zuliani, J. Stat. Phys., 98, 973 (2000). 6) A. Sharma, A. P. Young, Phys. Rev. B, 84, 014428 (2011). 7) F. Guerra, Int. J. Mod. Phys. B, 10, 1675 (1997). 8) M. Aizenman, P. Contucci, J. Stat. Phys., 92, 765 (1998). 9) S. Ghirlanda, F. Guerra, J. Phys. A: Math. Gen., 31, 9149 (1998). 10) G. Parisi, e-print arXiv:cond-mat/9801081. 11) M. Talagrand, Ann. Math., 163, 221 (2006). 12) F. Belletti, et al., (Janus Collaboration), Comput. Phys. Commun., 178, 208 (2008). 13) F. Belletti, et al., Phys. Rev. Lett., 101, 157201 (2008) -- J. Stat. Phys., 135, 1121 (2009). 14) R. Álvarez Baños, et al., (Janus Collaboration), J. Stat. Mech., (2010) P06026. 15) F. Krzakala, O. C. Martin, Phys. Rev. Lett., 85, 3013 (2000). 16) S. F. Edwards, P. W. Anderson, J. Phys. F, 5, 965 (1975) -- ibid, 6, 1927 (1976). 17) D. Íñiguez, G. Parisi, J. J. Ruiz-Lorenzo, J. Phys. A: Math. Gen, 29, 4337 (1996). 18) G. Parisi, F. Ricci-Tersenghi, J. Phys. A: Math. Gen., 33, 113 (2000). 19) G. G. Athanasiu, C. P. Bachas, W. F. Wolff, Phys. Rev. B, 35, 1965 (1987). 20) P. Contucci, C. Giardinà, C. Giberti, G. Parisi, C. Vernia, Phys. Rev. Lett., 99, 057206 (2007). 21) M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, M. Virasoro, Phys. Rev. Lett., 52, 1156 (1984). 22) M. Mézard, G. Parisi, M. A. Virasoro, J. Phys. Lett., 46, 217 (1985). 23) E. Marinari, G. Parisi, J. J. Ruiz-Lorenzo, Phys. Rev. B., 58, 14852 (1998). 24) M. Hasenbusch, A. Pelissetto, E. Vicari, J. Stat. Mech., (2008) L02001. 25) M. Hasenbusch, A. Pelissetto, E. Vicari, Phys. Rev. B, 78, 214205 (2008). 26) A. Billoire, L. A. Fernández, A. Maiorano, E. Marinari, V. Martín-Mayor, D. Yllanes, J. Stat. Mech (2011) P10019. 27) L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, J. J. Ruiz Lorenzo, Phys. Rev. Lett., 101, 107203 (2008). 28) This introduces a q-dependent spread, as the Jacobian of the transformation (30) stretches the distribution at high-q values.
Collections