Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On generating series of classes of equivariant Hilbert schemes of fat points

dc.contributor.authorLuengo Velasco, Ignacio
dc.contributor.authorGusein-Zade, Sabir Medgidovich
dc.contributor.authorMelle Hernández, Alejandro
dc.date.accessioned2023-06-20T00:16:49Z
dc.date.available2023-06-20T00:16:49Z
dc.date.issued2010-09
dc.descriptionThe first named author supported in part by the grants RFBR-10-01-00678, NSh-709.2008.1. The last two authors were supported in part by the grant MTM2007-67908-C02-02.
dc.description.abstractWe discuss different definitions of equivariant (with respect to an action of a finite group on a manifold) Hilbert schemes of zero-dimensional subschemes and compute generating series of classes of equivariant Hilbert schemes for actions of cyclic groups on the plane in some cases.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16511
dc.identifier.issn1609-3321
dc.identifier.officialurlhttp://www.ams.org/distribution/mmj/vol10-3-2010/abst10-3-2010.html
dc.identifier.relatedurlhttp://www.ams.org/distribution/mmj/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42322
dc.issue.number3
dc.journal.titleMoscow Mathematical Journal
dc.language.isoeng
dc.page.final602
dc.page.initial593
dc.publisherIndependent University of Moscow
dc.relation.projectIDRFBR-10-01-00678
dc.relation.projectIDNSh-709.2008.1
dc.relation.projectIDMTM2007-67908-C02-02
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordHilbert schemes of zero-dimensional subschemes
dc.subject.keywordGroup actions
dc.subject.keywordGenerating series.
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn generating series of classes of equivariant Hilbert schemes of fat points
dc.typejournal article
dc.volume.number10
dcterms.referencesJ. Cheah, On the cohomology of Hilbert schemes of points, J. Algebraic Geom. 5 (1996), no. 3, 479–511. S. Chen, Arithmetical properties of the number of t -core partitions, Ramanujan J. 18 (2009), no. 1, 103–112. A. Craw, D. Maclagan, and R. R. Thomas, Moduli of McKay quiver representations. I. The coherent component, Proc. Lond. Math. Soc. (3) 95 (2007), no. 1, 179–198. G. Ellingsrud and S. A. Strømme, On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87 (1987), no. 2, 343–352. L. Göttsche, On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett. 8 (2001), no. 5–6, 613–627. S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, A power structure over the Grothendieck ring of varieties, Math. Res. Lett. 11 (2004), no. 1, 49–57. S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points, Michigan Math. J. 54 (2006), no. 2, 353–359. T. Hausel, Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform, Proc. Natl. Acad. Sci. USA 103 (2006), no. 16, 6120–6124 (electronic). G. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. MR 644144. With a foreword by P. M. Cohn, With an introduction by Gilbert de B. Robinson. M. Kapranov, The elliptic curve in the S -duality theory and Eisenstein series for Kac-Moody groups, Preprint arXiv:math/0001005 [math.AG]. D. Knutson, λ -rings and the representation theory of the symmetric group, Lecture Notes in Mathematics, Vol. 308, Springer-Verlag, Berlin, 1973. A. Kuznetsov, Quiver varieties and Hilbert schemes, Mose. Math. J. 7 (2007), no. 4, 673–697, 767. S. K. Lando, Lectures on generating functions, Student Mathematical Library, vol. 23, American Mathematical Society, Providence, RI, 2003. A. Nolla de Celis, Dihedral groups and G -Hilbert schemes, Ph.D. thesis, Univ. of Warwick, 2008. E. Sernesi, Deformations of algebraic schemes, Grundlehren der Mathematischen Wissenschaften, vol. 334, Springer-Verlag, Berlin, 2006.
dspace.entity.typePublication
relation.isAuthorOfPublication2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce
relation.isAuthorOfPublicationc5f952f6-669f-4e3d-abc8-76d6ac56119b
relation.isAuthorOfPublication.latestForDiscovery2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luengo03.pdf
Size:
179.93 KB
Format:
Adobe Portable Document Format

Collections