Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fuzzy classification improvement by a pre-perceptual labelled segmentation algorithm

dc.book.titleNAFIPS 2004: Ammual meeting of the north american fuzzy information processing society,vols 1and 2: fuzzy sets in the heart of the canadianI rockies
dc.contributor.authorDel Amo, Ana
dc.contributor.authorSobrevilla, P.
dc.contributor.authorMontseny, E.
dc.contributor.authorMontero De Juan, Francisco Javier
dc.date.accessioned2023-06-20T13:38:36Z
dc.date.available2023-06-20T13:38:36Z
dc.date.issued2004
dc.descriptionAnnual Meeting of the North-American-Fuzzy-Information-Processing-Society JUN 27-30, 2004
dc.description.abstractThe goal of this paper is to present how two different image processing approaches can be enhanced by merging both methodologies. We will see how the results of a perceptual labelled segmentation methodology [7] can be improved by applying a fuzzy classification algorithm [2] based on a fuzzy outranking methodology [9] as a postprocessing algorithm, and viceversa. A comparison of the individual algorithms with the combination of both algorithms will be presented in order to demonstrate the improvement. Color Bone Marrow (1) images will be used. The objective is to detect White Blood Cells. The detection of white blood cells in bone marrow microscopic images presents big difficulties because of the great variance in their characteristics and also because of staining and illumination inconsistences. On the other hand, the maturity classes of white blood cells actually represents a continuum; cells frequently overlap each other, and there is a fairly wide variation in size and shape of nucleus and cytoplasm regions within given cell classes.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16941
dc.identifier.doi10.1109/NAFIPS.2004.1336331
dc.identifier.isbn0-7803-8376-1
dc.identifier.officialurlhttps//doi.org/10.1109/NAFIPS.2004.1336331
dc.identifier.relatedurlhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1336331
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53167
dc.language.isoeng
dc.page.final490
dc.page.initial486
dc.publication.placeBanff, Canada
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Conference Publications
dc.relation.projectIDBFM2002-0281.
dc.rights.accessRightsopen access
dc.subject.cdu004.8
dc.subject.keywordComputer Science
dc.subject.keywordArtificial Intelligence
dc.subject.keywordInformation Systems
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleFuzzy classification improvement by a pre-perceptual labelled segmentation algorithmen
dc.typebook part
dc.volume.number1
dcterms.referencesJ.C. Bezdek, and S. K. Pal Fuzzy Models for Pattern Recognition. New YorkIEEE Press 1992. A. Del Amo, J. Montero and G. Biging, “Classifying pixels by means of fuzzy relations,”Inter. J.General Systems, Vol. 29, pp. 605-621, 1999. A. Del Amo, J. Montero, A. Fernandez, M. Lopez,J.Tordesillas and G. Biging, “Spectral fuzzy classification:an application,” IEEE Tmns on Systems,Man and Cybernetics, Part C, Vol. 32,pp.42-48, Feb. 2002. A. Del Amo, J. Montero, and E. Molina, “Representation of consistent recursive rules”, European Journal of Operational Research, Vol. 130, pp. 53, 2001. A. Del Amo, D. Gomez, J. Montero and G. Biging:”Relevance and redundancy in fuzzy classification systems”. Mathware and Soft Computing 8203-216, 2001. A. Del Amo, J. Montero, G. Biging and V. Cutello:”Fuzzy classification systems”. European Journal of Operational Research, to appear. E.Montseny,P.Sobrevilla. ”Application of fuzzy techniques to the design of algorithms in computer vision”, Mathware d Soft Computing, Vol. 2-3,1998, pp.223-230.[8] J. R. Jensen Introductory Digital Image Processing.A Remote Sensing Perspectiwe. Prentice Hall P.P. Perny and B. Roy, “The use of fuzzy outranking relations in preference modelling”, Fuzzy Sets and Systems Vol. 49, pp. 33-53, 1992. Pratt W., Digital image processing, John Wiley and Sons, 1978. A.R. Robertson, ”Color perception”, Physics Today,1992, pp. 2429. S. Romani, E. Montseny, P. Sobrevilla. ”Obtaining the Relevant Colors of an image through Stabilitybased Fuzzy Color Histograms”, Proc. of the 12th IEEE International Conference on Fuzzy Systems,Sant Louis (MO), 2003, pp 914919. A.R. Smith, ”Color gamut transform pairs”, IEEE Tmns on Computer Graphics, Vol. 2, 1978, pp. 12-19. J. Siskos, J. Lochard and J. Lombard , “A multicriteria decision making methodology under fuzziness:application to the evaluation of radiological protection in nuclear power plants, Fuzzy Sets and Decision Analysis in H.J.Zimmermann, L.A.Zadeh and B.R. Gaines (eds.) North Holland, Amsterdam,1984. D. Yagi, K. Abe, H. Nakatani, ”Segmentation of color aerial photographs using HSV color models”,IAPR Workshop on Machine Vision Applications.(Tokyo), 1992.490
dspace.entity.typePublication
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscovery9e4cf7df-686c-452d-a98e-7b2602e9e0ea

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero46.pdf
Size:
432.79 KB
Format:
Adobe Portable Document Format