Building uncertainty-aware mathematical models based on evidence from datasets using grammatical evolution optimization techniques: the case of the obesity dynamics

dc.contributor.authorParra Rodríguez, Daniel
dc.contributor.authorHidalgo Pérez, José Ignacio
dc.contributor.authorVelasco Cabo, José Manuel
dc.contributor.authorVillanueva Micó, Rafael Jacinto
dc.date.accessioned2025-01-30T18:14:07Z
dc.date.available2025-01-30T18:14:07Z
dc.date.issued2024
dc.description.abstractThis paper introduces a methodology to build mathematical models based on evidence and data sets, considering data and model uncertainty. We study the evolution of obesity in the population, being obesity a consequence of the transmission of unhealthy lifestyle habits and behavioral patterns influenced by social networks (family, friends, peers, etc.). We propose a three-step methodology. First, we create a synthetic data set based on a previous model with real data. Then, we search for dynamic models based on difference equations that best fit the dynamics described by the dataset and their uncertainty (uncertainty-aware). To do this, we use a dynamic structured grammatical evolution algorithm (an algorithm that builds possible models) on which we have defined a grammar (set of possible expressions that can be part of the model). The definition of appropriate grammar is crucial because it allows us to build models that do not contradict the knowledge of the phenomenon studied. However, the data may suggest introducing new terms that indicate the influence of unknown factors. Finally, from among all the models obtained, we will algorithmically search for a selection of them that best describes the uncertainty of the data. This methodology can be applied to various scenarios with available datasets and a limited understanding of the phenomenon. It aims to generate models that not only achieve precision but also incorporate terms that correspond to identifiable processes, which can be explained within the context of the study problem.en
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationParra, D., Hidalgo, J.I., Velasco, JM. et al. Building uncertainty-aware mathematical models based on evidence from datasets using grammatical evolution optimization techniques: the case of the obesity dynamics. Comp. Appl. Math. 43, 420 (2024). https://doi.org/10.1007/s40314-024-02927-9
dc.identifier.doi10.1007/S40314-024-02927-9
dc.identifier.officialurlhttps://doi.org/10.1007/s40314-024-02927-9
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s40314-024-02927-9
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117441
dc.issue.number420
dc.journal.titleComputational and Applied Mathematics
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectIDinfo:eu-repo/grantAgreement/PID2020-115270GB-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/PDC2022-133429- I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/PID2021-125549OB-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/MCIN/AEI/10.13039 /501100011033
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu004
dc.subject.keywordDatasets
dc.subject.keywordAutomatic model building
dc.subject.keywordDynamic models
dc.subject.keywordUncertainty quantification
dc.subject.ucmInformática (Informática)
dc.subject.unesco12 Matemáticas
dc.titleBuilding uncertainty-aware mathematical models based on evidence from datasets using grammatical evolution optimization techniques: the case of the obesity dynamics
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number43
dspace.entity.typePublication
relation.isAuthorOfPublication8adfcc3a-ded6-4197-9dfa-15172ba51830
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublicationce8731c7-a3bb-4010-98d9-e9b72622941b
relation.isAuthorOfPublication.latestForDiscovery8adfcc3a-ded6-4197-9dfa-15172ba51830

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s40314.pdf
Size:
1.37 MB
Format:
Adobe Portable Document Format

Collections