Extreme estimates for interpolated operators by the real method

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Oxford University Press
Google Scholar
Research Projects
Organizational Units
Journal Issue
The paper establishes estimates for ideal measures of operators interpolated by the real method in terms of the measures of their restrictions to a sequence of spaces modelled on the intersection. It also shows that the estimates are optimal.
A. G. Aksoy and L. Maligranda, `Real interpolation and measure of weak noncompactness', Math. Nachr. 175 (1995)5±12. K. Astala, `On measures of non-compactness and ideal variations in Banach spaces', Ann. Acad. Sci.Fenn. Math. Diss. 29 (1980) 1±42. K. Astala and H.-O. Tylli, `Seminorms related to weak compactness and to Tauberian operators', Math. Proc. Cambridge Philos. Soc. 107 (1990) 367±375. B. Beauzamy, Espaces d'interpolation reUels : topologie et geUomeUtrie, Lecture Notes in Mathematics 666 (Springer, 1978). J. Bergh and J. Lo$ fstro$m, Interpolation spaces. An introduction (Springer, 1976). F. Cobos, T.Ku$ hn and T. Schonbek, `One-sided compactness results for Aronszajn-Gagliardo functors', J. Funct. Anal. 106 (1992) 274±313. F. Cobos, A.Manzano and A. Marti!nez, `Interpolation theory and measures related to operator ideals ', Quart. J. Math., to appear. F. Cobos and A. Marti!nez, `Remarks on interpolation properties of the measure of weak noncompactness and ideal variations ', Math. Nachr., to appear. M. Cwikel, `Real and complex interpolation and extrapolation of compact operators', Duke Math. J. 65 (1992) 333±343. F. S. De Blasi, `On a property of the unit sphere in a Banach space', Bull. Math. Soc. Sci. Math. R. S. Roumanie 21 (1977) 259±262. D. J. H. Garling and S. J. Montgomery Smith,`Complemented sub-spaces of spaces obtained by interpolation', J. London Math. Soc. (2) 44 (1991) 503±513. M. Gonza!lez, E. Saksman and H.-O. Tylli, `Representing non-weakly compact operators', Studia Math. 113 (1995) 265±282. S. Heinrich, `Closed operator ideals and interpolation', J. Funct. Anal. 35 (1980) 397±411. H.Jarchow, Locally conŠex spaces (Teubner, Stuttgart, 1981). L. Maligranda and A. Quevedo, `Interpolation of weakly compact operators', Arch. Math. 55 (1990) 280±284. M. Mastylo, `On interpolation of weakly compact operators', Hokkaido Math. J. 22 (1993) 105±114. A. Pietsch, Operator ideals (North-Holland, Amsterdam, 1980). H. Triebel, Interpolation theory, function spaces, differential operators (North-Holland, Amsterdam, 1978). H.-O. Tylli, `The essential norm of an operator is not self-dual ', Israel J. Math. 91 (1995) 93±110.