Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Automated Vehicles in Swarm Configuration: Simulation and Analysis

dc.contributor.authorEcheto, Javier
dc.contributor.authorSantos Peñas, Matilde
dc.contributor.authorRomana, Manuel
dc.date.accessioned2024-12-12T14:48:07Z
dc.date.available2024-12-12T14:48:07Z
dc.date.issued2022
dc.description.abstractDriving automation is becoming an increasing trend in the automotive industry as vehicles become more and more intelligent, while information is shared among them and with the infrastructure via wireless communication. Vehicle organization in swarms is considered an interesting approach for future traffic management, since it could significantly improve road efficiency and safety, while saving resources and increasing system resiliency. In this work, modelling and simulation of swarm traffic flow have been addressed. A decision support simulation tool for swarm intelligence traffic flow modelling including different types of vehicles and roads has been implemented using MATLAB. Functionalities such as driving, lane changing, overtaking and swarm cooperation are included. The behaviour of swarms of multi-brand platooning vehicles on different roads and driving conditions has been analyzed. The parameters that define the automated vehicle swarm have also been studied, such as its size, desired speed, inter-vehicle distance, etc., and how the swarm configuration depends on the application (highway traffic, traffic jam assist, …). The result of this research shows how traffic flow can be maximized when vehicles are managed in a swarm configuration.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationEcheto, J., Santos, M., & Romana, M. G. (2022). Automated vehicles in swarm configuration: Simulation and analysis. Neurocomputing, 501, 679-693.
dc.identifier.doihttps://doi.org/10.1016/j.neucom.2021.09.083
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S0925231222006427?casa_token=k5MekdHga4wAAAAA:1LPvDi6ZQduCniFPt59egoUrcJQFeaKuuwTIDSpLBzzcgsIpVF7iifNWRSiDqCWGo6v65-EX3s8
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112549
dc.journal.titleNeurocomputing
dc.language.isoeng
dc.page.final693
dc.page.initial679
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordEvolutionary Computation
dc.subject.keywordSwarm intelligence
dc.subject.keywordCar-following
dc.subject.keywordAutomated vehicle
dc.subject.keywordTraffic simulation
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco3327.02 Análisis del Tráfico
dc.titleAutomated Vehicles in Swarm Configuration: Simulation and Analysis
dc.typejournal article
dc.volume.number501
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Neurocomputing 2022.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format

Collections