Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Regge analysis of pion-pion (and pion-kaon) scattering for energy s^(1/2)> 1.4 GeV

dc.contributor.authorPeláez Sagredo, José Ramón
dc.contributor.authorYnduráin, F. J.
dc.date.accessioned2023-06-20T11:07:13Z
dc.date.available2023-06-20T11:07:13Z
dc.date.issued2004-06
dc.description©2004 The American Physical Society. We are grateful to CICYT, Spain, and to INTAS, for partial financial support. J.R.P. thanks partial support from the Spanish CICYT projects, Nos. BFM2000-1326 and BFM2002-01003, and the E.U. EURIDICE network contract No. HPRN-CT-2002-00311.
dc.description.abstractWe perform a detailed Regge analysis of NN, πN, KN, π π, and πK scattering. From it, we find expressions that represent the pp scattering amplitudes with an accuracy of a few percent for exchange of isospin zero and ~15% for exchange of isospin 1, and this for energies s^(1/2) ˃1.4 GeV and for momentum transfers |t|^( ½) ≤0.4 GeV. These Regge formulas are perfectly compatible with the low energy [s^(1/2)~1.4 GeV] scattering amplitudes deduced from π π phase shift analyses as well as with higher energy [s^(1/2)≥1.4 GeV] experimental π π cross sections. They are also compatible with NN, KN, and πN experimental cross sections using factorization, a property that we check with precision. This contrasts with results from current phase shift analyses of the π π scattering amplitude, which bear little resemblance to reality in the region 1.4<s^(1/2)<2 GeV, as they are not well defined and increasingly violate a number of physical requirements when the energy grows. πK scattering is also considered, and we present a Regge analysis for these processes valid for energies s^(1/2) ˃1.7 GeV. As a by-product of our analysis we obtain also a fit of NN, πN, and KN cross sections valid from c.m. kinetic energy E_(kin)≈.1 GeV to multi-TeV energies.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT, Spain
dc.description.sponsorshipINTAS
dc.description.sponsorshipE.U. EURIDICE network
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35501
dc.identifier.doi10.1103/PhysRevD.69.114001
dc.identifier.issn0556-2821
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.69.114001
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51733
dc.issue.number11
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDBFM2000-1326
dc.relation.projectIDBFM2002-01003
dc.relation.projectIDHPRN-CT-2002-00311.
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordPhase-shift analysis
dc.subject.keywordInelastic Ep scattering
dc.subject.keywordAngular-momentum plane
dc.subject.keywordCross sections
dc.subject.keywordQuantum chromodynamics
dc.subject.keywordPerturbation-theory
dc.subject.keywordGev-C
dc.subject.keywordTrajectories
dc.subject.keywordCollisions
dc.subject.keywordDynamics
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleRegge analysis of pion-pion (and pion-kaon) scattering for energy s^(1/2)> 1.4 GeV
dc.typejournal article
dc.volume.number69
dcterms.references[1] B. Ananthanarayan et al., Phys. Rep. 353, 207 (2001). [2] G. Colangelo, J. Gasser, and H. Leutwyler, Nucl. Phys. B603, 125 (2001). [3] S. Descotes, N. H. Fuchs, L. Girlanda, and J. Stern, Eur. Phys. J. C 24, 469 (2002); R. Kamiński, L. Leśniak, and B. Loiseau, Phys. Lett. B 551, 241 (2003). [4] P. Buttiker, S. Descotes-Genan, and B. Moussallam, Eur. Phys. J. C 33, 409 (2004). [5] M. R. Pennington, Ann. Phys. (N.Y.) 92, 164 (1990). [6] C. D. Froggatt and J. L. Petersen, Nucl. Phys. B129, 89 (1977). [7] N. N. Biswas et al., Phys. Rev. Lett. 18, 273 (1967) [π ̅ π ̅, π^(+) π ̅ and π^(0) π ̅]; D. Cohen et al., Phys. Rev. D 7, 661 (1973) [ π ̅ π ̅]; W. J. Robertson, W. D. Walker, and J. L. Davis, ibid. 7, 2554 (19739 [π^(+) π ̅]; W. Hoogland et al., Nucl. Phys. B126, 109 (1977) [π ̅ π ̅]; J. Hanlon et al., Phys. Rev. Lett. 37, 967 (1976) [π^(+) π ̅]; H. Abramowicz et al., Nucl. Phys. B166, 62 (1980) [π^(+) π ̅]. These references cover the region between 1.35 and 16 GeV and agree within errors in the regions where they overlap (with the exception of π ̅ π ̅ below 2.3 GeV; see text!. [8] B. Hyams et al., Nucl. Phys. B64, 134 (1973); G. Grayer et al., ibid. B75, 189 (1974). See also the analysis of the same experimental data in P. Estabrooks and A. D. Martin, ibid. B79, 301 (1974); K. L. Au, D. Morgan, and M. R. Pennington, Phys. Rev. D 35, 1633 (1987). [9] F. J. Ynduráin, Report No. FTUAM 03-14, hep-ph/0310206. @10# F. J. Ynduráin, Phys. Lett. B 578, 99 (2004). [11] J. R. Peláez and F. J. Ynduráin, Phys. Rev. D 68, 074005 (2003). [12] J. R. Cudell et al., Phys. Rev. Lett. 89, 201801 (2002). [13] M. Gell-Mann, Phys. Rev. Lett. 8, 263 (1962); V. N. Gribov and I. Ya. Pomeranchuk, ibid. 8, 343 (1962). For more references in general Regge theory, see V. D. Barger and D. B. Cline, Phenomenological Theories of High Energy Scattering (Benjamin, New York, 1969). For references to the QCD analysis, cf. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972); 15, 675 (1972); F. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 44, 443 (1976); Yu. L. Dokshitzer, ibid. 46, 641 (1977); Ya. Ya. Balitskii and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978); G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977). For a phenomenological Regge analysis of deep inelastic scattering, see F. Martin, Phys. Rev. D 19, 1382 (1979); C. López and F. J. Ynduráin, Nucl. Phys. B171, 231 (1980); K. Adel, F. Barreiro, and F. J. Ynduráin, ibid. B495, 221 (1997). For the QCD theory of Regge trajectories, see A. Yu. Dubin, A. B. Kaidalov, and Yu. A. Simonov, Phys. Lett. B 323, 41 (1994); Yu. A. Simonov, Nucl. Phys. B324, 67 81989), from which earlier references may be traced. [14] W. Rarita et al., Phys. Rev. 165, 1615 (1968). [15] S. J. Brodsky and G. Farrar, Phys. Rev. Lett. 31, 1153 (1973). [16] V. Barger and M. Olsson, Phys. Rev. 151, 1123 (1966). [17] Particle Data Tables: K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002). [18] H. J. Levin and L. L. Frankfurter, JETP Lett. 2, 65 (1965). For a comprehensive review, see J. J. J. Kokkedee, The Quark Model (Benjamin, New York, 1969). [19] G. Veneziano, Nuovo Cimento 57, 190 (1968); C. Lovelace, Phys. Lett. 28B, 264 (1968). [20] V. Barger et al., Nucl. Phys. B5, 411 (1968). [21] J. R. Cudell et al., Phys. Rev. D 61, 034019 (2000). [22] P. Desgrolard et al., Eur. Phys. J. C 18, 555 (2001). [23] J. R. Cudell et al., Phys. Rev. D 65, 074024 (2002). [24] F. J. Ynduráin, Phys. Lett. B 578, 99 (2004); 586, 439(E) (2004). Note that the power of the logarithm in the denominator in Eq. (24) is incorrectly given here as 7, instead of the correct value 7/ 2. [25] S. Mandelstam, Nuovo Cimento 30, 1127 (1963); 30, 1148 (1963). [26] R. M. Baltrusaitis et al., Phys. Rev. Lett. 52, 1380 (1984); M. Honda et al., ibid. 70, 525 (1993).
dspace.entity.typePublication
relation.isAuthorOfPublication70900239-cb8b-49f3-931f-9dc6a8b7d8d5
relation.isAuthorOfPublication.latestForDiscovery70900239-cb8b-49f3-931f-9dc6a8b7d8d5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pelaezsagredo68libre.pdf
Size:
540.7 KB
Format:
Adobe Portable Document Format

Collections