A 2D climate energy balance model coupled with a 3D deep ocean model

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Department of Mathematics Texas State University
Google Scholar
Research Projects
Organizational Units
Journal Issue
We study a three dimensional climate model which represents the coupling of the mean surface temperature with the ocean temperature. We prove the existence of a bounded weak solution by a fixed point argument.
D. Arcoya, J.I. Díaz, L. Tello, S-shaped bifurcation branch in a quasilinear multivalued model arising in Climatology, Journal of Differential Equations, 150 (1998) 215-225. T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampere Equations. Springer-Verlag, New York, 1982. I. Bejenaru, J. I. Diaz, I. I. Vrabie; An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamic boundary conditions, Electronic J. Diff. Eqns., 2001, 50, (2001), 1 19. W. H. Berger, S. Burker, E. Vincent, Glacial-Holocene transition: Climate Pulsations and Sporadic Shutdown of NADW production, in Abrupt Climatic Change - Evidence and Implications,(eds. W.H. Berger, L.D. Labeyrie), Reidel Publishing Co. Dordrecht Holland (1987). H. Brezis, Operateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert. North Holland, Amsterdam (1973). M. I. Budyko, The effects of solar radiation variations on the climate of the Earth, Tellus, 21 (1969), 611-619. J. I. Diaz, Mathematical analysis of some diffusive energy balance climate models, in the book Mathematics, Climate and Environment, (J. I. Diaz and J. L. Lions, eds. Masson, Paris, 28-56(1993). J. I. Diaz, R. Jimenez, Aplicación a la teoria no lineal de semigrupos a un operador pseudodiferencial, Actas VII CEDYA, Univ. Granada (1984) 137-142. J. I. Diaz, L. Tello, A nonlinear parabolic problem on a Riemannian manifold without boundary arising in Climatology, Collectanea Mathematica 50,1 (1999), 19-51. J. I. Díaz, L. Tello, Sobre un modelo climatico de balance de energia superficial acoplado con un oceano profundo, Actas del XVII CEDYA/ VI CMA, (2001). J. I. Diaz, L. Tello, On a climate model with a dynamic nonlinear diffusive boundary condition, submitted (2006). M. Ghil, S. Childress, Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics Dynamo Theory and Climate Dynamics. Springer Verlag. Applied Mathematical Sciences. 1987. G. Hetzer, The structure of the principal component for semilinear diffusion equations from energy balance climate models, Houston Journal of Math. 16, 203-216 (1990). J. L. Lions, R. Temam, S. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity 5, 237-288 (1992). G. R. North, Multiple solutions in energy balance climate models. Paleogeography, Paleoclimatology, Paleoecology 82, Elsevier Science Publishers B.V. Amsterdam, 225-235 (1990). W. D. Sellers, A global climatic model based on the energy balance of the earth-atmosphere system, J. Appl. Meteorol. 8 (1969), 392-400. P. H. Stone, A simplified radiative - dynamical model for the static stability of rotating atmospheres, Journal of the Atmospheric Sciences, 29, No. 3, 405-418 (1972). I. I. Vrabie, Compactness methods for nonlinear evolutions, Pitman Longman. London. 1987. R. G. Watts, M. Morantine, Rapid climatic change and the deep ocean, Climatic Change, 16,(1990) 83-97.