PEPS as unique ground states of local Hamiltonians

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Rinton Press
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this paper we consider projected entangled pair states (PEPS) on arbitrary lattices. We construct local parent Hamiltonians for each PEPS and isolate a condition under which the state is the unique ground state of the Hamiltonian. This condition, verified by generic PEPS and examples like the AKLT model, is an injective relation between the boundary and the bulk of any local region. While it implies the existence of an energy gap in the 1D case we will show that in certain cases (e.g., on a 2D hexagonal lattice) the parent Hamiltonian can be gapless with a critical ground state. To show this we invoke a mapping between classical and quantum models and prove that in these cases the injectivity relation between boundary and bulk solely depends on the lattice geometry.
D. Pérez-García, F. Verstraete, M.M. Wolf, J.I. Cirac, Quant. Inf. Comp. 7, 401 (2007); arxiv:quant-ph/0608197. M. Fannes, B. Nachtergaele and R. F. Werner, Commun. Math. Phys. 144, 443-490 (1992). A. Klümper, A. Schadschneider, J. Zittartz, J. Phys. A 24, L955 (1991); Z. Phys. B 87, 281 (1992). I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki, Commun. Math. Phys. 115, 477 (1988). F. Verstraete, J.I. Cirac, J.I. Latorre, E. Rico and M.M. Wolf, Phys. Rev. Lett. 94, 140601 (2005); C. Schoen, E. Solano, F. Verstraete, J. I. Cirac, M. M. Wolf, Phys. Rev. Lett. 95, 110503 (2005); M.M. Wolf, G. Ortiz, F. Verstraete, J.I. Cirac, Phys. Rev. Lett. 97, 110403 (2006); R. Josza, arXiv:quant-ph/0603163; G. Vidal, Phys. Rev. Lett. 91, 147902 (2003); F. Verstraete and I. Cirac, Phys. Rev. B 73, 094423 (2006); D. Gross, J. Eisert, N. Schuch, D. Perez-Garcia, arXiv:0706.3401 (2007); M.B. Hastings, arXiv:cond-mat/0701055 (2007). F. Verstraete, D. Porras and J.I. Cirac, Phys. Rev. Lett. 93, 227205 (2004); M. Zwolak, G. Vidal, Phys. Rev. Lett. 93, 207205 (2004); T.J. Osborne, Phys. Rev. Lett. 97 157202 (2006); G. Vidal, arXiv:cond-mat/0512165 (2005); F. Verstraete, A. Weichselbaum, U. Schollwöck, J.I. Cirac, J. von Delft, arXiv:cond-mat/0504305 (2005). F. Verstraete, J.I. Cirac, cond-mat/0407066 (2004). F. Verstraete, M.M. Wolf, D. Pérez-García, J.I. Cirac, Phys. Rev. Lett. 96, 220601 (2006). N. Schuch,M. M. Wolf, F. Verstraete, J. I. Cirac, Phys. Rev. Lett. 98, 140506 (2007). B.S. Shastry, B. Sutherland, Physica B 108, 1069 (1981); H.J. Schmidt, J. Phys. A 38, 2123 (2005); B. Kumar, Phys. Rev. B 66, 024406 (2002). H. Niggemann, A. Klümper, J. Zittartz, Eur. Phys. J. B 13, 15 (2000); Z. Phys. B 104, 103 (1997). F. Verstraete, J.I. Cirac, Phys. Rev. A 70, 060302(R) (2004). V. Murg, F. Verstraete, J.I. Cirac, Phys. Rev. A 75, 033605 (2007). M.B. Hastings, Phys. Rev. B 73, 085115 (2006) V. Privman, M. Fisher, Phys. Rev. B 30, 322 (1984); K. Husimi, I. Syozi, Prog. Theor. Phys. 5, 177 (1950). M. Hastings, T. Koma, Commun.Math.Phys. 265 781 (2006); B. Nachtergaele, R. Sims Commun. Math. Phys., 265 119 (2006). J. R. Norris, Markov Chains, Cambridge University Press, Cambridge 1997. F. Martinelli, Lectures on Glauber Dynamics for Discrete Spin Models, LNM 1717, Springer, 1999; F. Martinelli, E. Olivieri, Comm. Math. Phys. 161, 447 (1994); F. Martinelli, E. Olivieri, R. Schonmann, Comm. Math. Phys. 165, 33 (1994); F. Martinelli, A. Sinclair, D. Weitz, Comm. Math. Phys. 250, 301 (2004).