Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The CARMENES search for exoplanets around M dwarfs: a deep learning approach to determine fundamental parameters of target stars

dc.contributor.authorCortés Contreras, Miriam
dc.contributor.authorMontes Gutiérrez, David
dc.date.accessioned2023-06-17T08:55:37Z
dc.date.available2023-06-17T08:55:37Z
dc.date.issued2020-09-30
dc.description©ESO 2020. Artículo firmado por 29 autores. We thank an anonymous referee for helpful comments that improved the quality of this paper. CARMENES is an instrument for the Centro Astronómico Hispano-Alemán de Calar Alto (CAHA, Almería, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Científicas (CSIC), European Regional Development Fund (ERDF) through projects FICTS-2011- 02, ICTS-2017-07-CAHA-4, and CAHA16-CE-3978, and the members of the CARMENES Consortium (Max-Planck-Institut für Astronomie, Instituto de Astrofísica de Andalucía, Landessternwarte Königstuhl, Institut de Ciències de l’Espai, Insitut für Astrophysik Göttingen, Universidad Complutense de Madrid, Thüringer Landessternwarte Tautenburg, Instituto de Astrofísica de Canarias, Hamburger Sternwarte, Centro de Astrobiología and Centro Astronómico Hispano-Alemán), with additional contributions by the Spanish Ministry of Economy, the German Science Foundation through the Major Research Instrumentation Programme and DFG Research Unit FOR2544 “Blue Planets around Red Stars”, the Klaus Tschira Stiftung, the states of BadenWürttemberg and Niedersachsen, and by the Junta de Andalucía. We acknowledge financial support from NASA through grant NNX17AG24G, the Agencia Estatal de Investigación of the Ministerio de Ciencia through fellowship FPU15/01476, Innovación y Universidades and the ERDF through projects PID2019-109522GB-C51/2/3/4, AYA2016-79425-C3-1/2/3-P and AYA2018- 84089, the Fundação para a Ciência e a Tecnologia through and ERDF through grants UID/FIS/04434/2019, UIDB/04434/2020 and UIDP/04434/2020, PTDC/FIS-AST/28953/2017, and COMPETE2020 - Programa Operacional Competitividade e Internacionalização POCI-01-0145-FEDER-028953.
dc.description.abstractExisting and upcoming instrumentation is collecting large amounts of astrophysical data, which require efficient and fast analysis techniques. We present a deep neural network architecture to analyze high-resolution stellar spectra and predict stellar parameters such as effective temperature, surface gravity, metallicity, and rotational velocity. With this study, we firstly demonstrate the capability of deep neural networks to precisely recover stellar parameters from a synthetic training set. Secondly, we analyze the application of this method to observed spectra and the impact of the synthetic gap (i.e., the difference between observed and synthetic spectra) on the estimation of stellar parameters, their errors, and their precision. Our convolutional network is trained on synthetic PHOENIX-ACES spectra in different optical and near-infrared wavelength regions. For each of the four stellar parameters, Teff, log g, [M/H], and v sin i, we constructed a neural network model to estimate each parameter independently. We then applied this method to 50 M dwarfs with high-resolution spectra taken with CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Échelle Spectrographs), which operates in the visible (520–960 nm) and near-infrared wavelength range (960–1710 nm) simultaneously. Our results are compared with literature values for these stars. They show mostly good agreement within the errors, but also exhibit large deviations in some cases, especially for [M/H], pointing out the importance of a better understanding of the synthetic gap.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)/FEDER
dc.description.sponsorshipConsejo Superior de Investigaciones Científicas (CSIC)/FEDER
dc.description.sponsorshipFundação para a Ciência e a Tecnologia/FEDER
dc.description.sponsorshipNASA
dc.description.sponsorshipCOMPETE2020 - Programa Operacional Competitividade e Internacionalização
dc.description.sponsorshipthe German Max-Planck-Gesellschaft (MPG)
dc.description.sponsorshipthe Max-Planck-Institut für Astronomie
dc.description.sponsorshipInstituto de Astrofísica de Andalucía
dc.description.sponsorshipLandessternwarte Königstuhl
dc.description.sponsorshipInstitut de Ciències de l’Espai
dc.description.sponsorshipInsitut für Astrophysik Göttingen
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipThüringer Landessternwarte Tautenburg
dc.description.sponsorshipInstituto de Astrofísica de Canarias
dc.description.sponsorshipthe German Science Foundation through the Major Research Instrumentation Programme
dc.description.sponsorshipHamburger Sternwarte
dc.description.sponsorshipCentro de Astrobiología and Centro Astronómico Hispano-Alemán
dc.description.sponsorshipthe Spanish Ministry of Economy
dc.description.sponsorshipthe DFG Research Unit FOR2544 “Blue Planets around Red Stars”
dc.description.sponsorshipthe Klaus Tschira Stiftung
dc.description.sponsorshipthe states of BadenWürttemberg and Niedersachsen
dc.description.sponsorshipthe Junta de Andalucía, Spain
dc.description.sponsorshipthe Agencia Estatal de Investigación of the Ministerio de Ciencia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63045
dc.identifier.doi10.1051/0004-6361/202038787
dc.identifier.issn0004-6361
dc.identifier.officialurlhttp://dx.doi.org/10.1051/0004-6361/202038787
dc.identifier.relatedurlhttps://www.aanda.org/
dc.identifier.relatedurlhttps://arxiv.org/abs/2008.01186
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7506
dc.journal.titleAstronomy & Astrophysics
dc.language.isoeng
dc.publisherEDP Sciencies
dc.relation.projectID(FPU15/01476; AYA2016-79425-C3-1/2/3-P; PID2019-109522GB-C51/2/3/4; AYA2018- 84089)
dc.relation.projectID(FICTS-2011- 02, ICTS-2017-07-CAHA-4, and CAHA16-CE-3978)
dc.relation.projectID(UID/FIS/04434/2019, UIDB/04434/2020 and UIDP/04434/2020, PTDC/FIS-AST/28953/2017)
dc.relation.projectIDNNX17AG24G
dc.relation.projectIDPOCI-01-0145-FEDER-028953
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordLow-Mass stars
dc.subject.keywordSpectral energy-distributions
dc.subject.keywordParsec evolutionary tracks
dc.subject.keywordModel atmospheres
dc.subject.keywordNeural-networks
dc.subject.keywordRadiative-transfer
dc.subject.keywordStellar evolution
dc.subject.keywordInfrared-spectra
dc.subject.keywordPlanet hosts
dc.subject.keywordClassification
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleThe CARMENES search for exoplanets around M dwarfs: a deep learning approach to determine fundamental parameters of target stars
dc.typejournal article
dc.volume.number642
dspace.entity.typePublication
relation.isAuthorOfPublicatione6377124-0254-4fb0-859e-9c6b28ae461c
relation.isAuthorOfPublication2dfe4286-12c7-4d3a-bfda-d298a90cc8fe
relation.isAuthorOfPublication.latestForDiscoverye6377124-0254-4fb0-859e-9c6b28ae461c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cortescontreras28preprint.pdf
Size:
1.98 MB
Format:
Adobe Portable Document Format

Collections