The quantum transition of the two-dimensional Ising spin glass

dc.contributor.authorBernaschi, Massimo
dc.contributor.authorGonzález-Adalid Pemartín, Isidoro
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorParisi, Giorgio
dc.date.accessioned2025-10-31T15:27:17Z
dc.date.available2025-10-31T15:27:17Z
dc.date.issued2024-07-10
dc.description© The Author(s) 2024. EHPC-REG-2022R03-182 FI-2022-2-0007 FPU18/02665
dc.description.abstractQuantum annealers are commercial devices that aim to solve very hard computational problems(1), typically those involving spin glasses(2,3). Just as in metallurgic annealing, in which a ferrous metal is slowly cooled(4), quantum annealers seek good solutions by slowly removing the transverse magnetic field at the lowest possible temperature. Removing the field diminishes the quantum fluctuations but forces the system to traverse the critical point that separates the disordered phase (at large fields) from the spin-glass phase (at small fields). A full understanding of this phase transition is still missing. A debated, crucial question regards the closing of the energy gap separating the ground state from the first excited state. All hopes of achieving an exponential speed-up, compared to classical computers, rest on the assumption that the gap will close algebraically with the number of spins(5-9). However, renormalization group calculations predict instead that there is an infinite-randomness fixed point(10). Here we solve this debate through extreme-scale numerical simulations, finding that both parties have grasped parts of the truth. Although the closing of the gap at the critical point is indeed super-algebraic, it remains algebraic if one restricts the symmetry of possible excitations. As this symmetry restriction is experimentally achievable (at least nominally), there is still hope for the quantum annealing paradigm(11-13).
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipRed Española de Supercomputación
dc.description.statuspub
dc.identifier.citationBernaschi, M., González-Adalid Pemartín, I., Martín-Mayor, V. et al. The quantum transition of the two-dimensional Ising spin glass. Nature 631, 749–754 (2024). https://doi.org/10.1038/s41586-024-07647-y
dc.identifier.doi10.1038/s41586-024-07647-y
dc.identifier.essn1476-4687
dc.identifier.issn0028-0836
dc.identifier.officialurlhttps//doi.org/10.1038/s41586-024-07647-y
dc.identifier.relatedurlhttps://www.nature.com/articles/s41586-024-07647-y#citeas
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125600
dc.issue.number8022
dc.journal.titleNature
dc.language.isoeng
dc.page.final754
dc.page.initial749
dc.publisherNature Portfolio
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136374NB-C21/ES/COMPLEJIDAD EN FISICA Y MAS ALLA: DE LOS VIDRIOS DE ESPIN A LAS INTERACCIONES SOCIALES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/694925/EU
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu53
dc.subject.keywordGriffiths singularities
dc.subject.keywordCritical exponents
dc.subject.keywordRandom impurities
dc.subject.keywordCritical-behavior
dc.subject.keywordScaling theory
dc.subject.keywordPhase
dc.subject.keywordModel
dc.subject.keywordOptimization
dc.subject.keywordBoundary
dc.subject.keywordOrder
dc.subject.ucmFísica (Física)
dc.subject.unesco2212 Física Teórica
dc.titleThe quantum transition of the two-dimensional Ising spin glass
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number631
dspace.entity.typePublication
relation.isAuthorOfPublication2c2d4b95-c5fe-48c3-b9c2-2ff3064f71f3
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication.latestForDiscovery2c2d4b95-c5fe-48c3-b9c2-2ff3064f71f3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nature 631.8022 (2024) 749-754.pdf.pdf
Size:
4.28 MB
Format:
Adobe Portable Document Format

Collections