Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Degree of the divisor of solutions of a differential equation on a projective variety

dc.contributor.authorMuñoz, Vicente
dc.contributor.authorSols Lucía, Ignacio
dc.date.accessioned2023-06-20T18:42:12Z
dc.date.available2023-06-20T18:42:12Z
dc.date.issued2000
dc.description.abstractUsing the data schemes from [I] we give a rigorous definition of algebraic differential equations on the complex projective space P-n. For an algebraic subvariety S subset of or equal to P-n, we present an explicit formula for the degree of the divisor of solutions of a differential equation on S and give some examples of applications. We extend the technique and result to the real case.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20502
dc.identifier.doi10.1080/00927870008827187
dc.identifier.issn0092-7872
dc.identifier.officialurlhttp://www.tandfonline.com/doi/pdf/10.1080/00927870008827187
dc.identifier.relatedurlhttp://www.tandfonline.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58357
dc.issue.number12
dc.journal.titleCommunications in Algebra
dc.language.isoeng
dc.page.final5767
dc.page.initial5749
dc.publisherTaylor & Francis
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.keywordDivisor of solutions of a differential equation
dc.subject.keywordGrassmannians of a tangent bundle
dc.subject.keywordIntersection numbers
dc.subject.keywordSchubert cycles
dc.subject.keywordDivisor of solutions
dc.subject.keywordPlane
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleDegree of the divisor of solutions of a differential equation on a projective variety
dc.typejournal article
dc.volume.number28
dcterms.referencesE. Arrondo, I. Sols and R. Speiser, Global moduli of contacts, Arkiv för matematik, 35 1997, 1–57. M. Belghiti, Variétés des points infinitement voisins d'ordre n de points du plan, C.R. Acad. Sci. Paris, 314 Série I, 1992, 541–545. S. Colley and G. Kennedy, A higher-order contact formula for plane curves, Comm. in Algebra, 19 1991, 479–508. S. Colley and G. Kennedy, Triple and quadruple contact of plane curves, Proc. Zeuthen Symp. Contemp. Math. 123 1991, 31–559. A. Collino, Evidence for a conjecture of Ellingsrud and Strømme on the Chow ring of Hild d P 2 , Illinois Jour. Math., 32 1988, 171–210. G. Halphen, Sur la recherche des points d'une courbe algébrique plane, qui satisfont à une condition exprimée par une équation différentielle algébrique, et sur les questions analogues dans l'espace, Oeuvres, Gauthier-Villars, Paris, 1 1916, 475–542. R. Hartshorne, Algebraic geometry, Springer-Verlag, 1978.
dspace.entity.typePublication
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication.latestForDiscovery6d35def4-3d5f-4978-800f-82b7edf76b5d

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Sols09libre.pdf
Size:
176.82 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Sols09de_pago.pdf
Size:
641.73 KB
Format:
Adobe Portable Document Format

Collections