Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Liquid–liquid phase separation of the Golgi matrix protein GM130

Loading...
Thumbnail Image

Full text at PDC

Publication date

2020

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

John Wiley & Sons/Federation of European Biochemical Societies
Citations
Google Scholar

Citation

Abstract

Golgins are an abundant class of peripheral membrane proteins of the Golgi. These very long (50–400 nm) rod-like proteins initially capture cognate transport vesicles, thus enabling subsequent SNARE-mediated membrane fusion. Here, we explore the hypothesis that in addition to serving as vesicle tethers, Golgins may also possess the capacity to phase separate and, thereby, contribute to the internal organization of the Golgi. GM130 is the most abundant Golgin at the cis Golgi. Remarkably, overexpressed GM130 forms liquid droplets in cells analogous to those described for numerous intrinsically disordered proteins with low complexity sequences, even though GM130 is neither low in complexity nor intrinsically disordered. Virtually pure recombinant GM130 also phase-separates into dynamic, liquid-like droplets in close to physiological buffers and at concentrations similar to its estimated local concentration at the cis Golgi.

Research Projects

Organizational Units

Journal Issue

Description

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (ERC grant agreement n° 338133)

Keywords

Collections