Recent applications on the combination of Mesoporous Silica Nanoparticles with Nucleic Acids: Development of Bioresponsive Devices, Carriers and Sensors

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Royal Society of Chemistry
Google Scholar
Research Projects
Organizational Units
Journal Issue
The discovery and control of the biological roles mediated by nucleic acids have turned them into a powerful tool for the development of advanced biotechnological materials. Much is the importance of those gene-keeping biomacromolecules that even nanomaterials have succumbed to the claimed benefits of DNA and RNA. Currently, there could be found in the literature a practically intractable number of examples which report the use in combination of nanoparticles with nucleic acids, which demands boundedness. Following this premise, this revision will only cover the most recent and powerful strategies developed to exploit the possibilities of nucleic acids as biotechnological materials when in combination with mesoporous silica nanoparticles. The extensive research done on nucleic acids has significantly incremented the technological possibilities for those biomacromolecules, which could be employed in many different applications; where substrate or sequence recognition or modulation of biological pathways due to its coding role in living cells are the most promising. In the present revision, the chosen counterpart, mesoporous silica nanoparticles, also with unique properties, became a reference material for drug delivery and biomedical applications due to their high biocompatibility and porous structure suitable for hosting and delivering small molecules. Although most of revisions deal with significant advances in the use of nucleic acid and mesoporous silica nanoparticles in biotechnological applications, a rationale classification of those new generation hybrid materials is still uncovered. Along this review there will be covered promising strategies for living cell and biological sensors, DNA-based molecular gates with targeting, transfection or silencing properties which could provide a significant advance of current nanomedicine.
RESEARCHER ID L-2854-2014  (Rafael Castillo Romero) ORCID 0000-0003-1957-3098 (Rafael Castillo Romero) RESEARCHER ID M-3316-2014 (Alejandro Baeza García) ORCID 0000-0002-8408-3389 (Alejandro Baeza García) RESEARCHER ID M-3378-2014 (María Vallet Regí) ORCID 0000-0002-6104-4889 (María Vallet Regí)
Unesco subjects
1 S. S. Agasti, S. Rana, M.-H. Park, C. K. Kim, C.-C. You and V. M. Rotello, Adv. Drug Deliv. Rev., 2010, 62, 316–328. 2 M. J. Sailor and J.-H. Park, Adv. Mater., 2012, 24, 3779–3802. 3 N. Ž. Knežević, E. Ruiz-Hernández, W. E. Hennink and M. Vallet-Regí, RSC Adv., 2013, 3, 9584–9593. 4 Y. Matsumura and H. Maeda, Cancer Res., 1986, 46, 6387–6392. 5 J. Fang, H. Nakamura and H. Maeda, Adv. Drug Deliv. Rev., 2011, 63, 136–151. 6 H. Maeda, Adv. Drug Deliv. Rev., 2015, 91, 3–6. 7 M. Vallet-Regí, F. Balas and D. Arcos, Angew. Chem. Int. Ed. Engl., 2007, 46, 7548–7558. 8 M. Martínez-Carmona, M. Colilla and M. Vallet-Regí, Nanomaterials, 2015, 5, 1906–1937. 9 M. Vallet-Regi, A. Rámila, R. P. del Real and J. Pérez-Pariente, Chem. Mater., 2001, 13, 308–311. 10 A. Baeza, M. Colilla and M. Vallet-Regí, Expert Opin. Drug Deliv., 2015, 12, 319–337. 11 S. Giret, M. Wong Chi Man and C. Carcel, Chem. - A Eur. J., 2015, 21, 13850–13865. 12 J. Lu, M. Liong, Z. Li, J. I. Zink and F. Tamanoi, Small, 2010, 6, 1794–1805. 13 Q. He, Z. Zhang, F. Gao, Y. Li and J. Shi, Small, 2011, 7, 271–280. 14 X. Huang, L. Li, T. Liu, N. Hao, H. Liu, D. Chen and F. Tang, ACS Nano, 2011, 5, 5390–5399. 15 F. Tang, L. Li and D. Chen, Adv. Mater., 2012, 24, 1504–1534. 16 J. Liu, C. Detrembleur, S. Mornet, C. Jérôme and E. Duguet, J. Mater. Chem. B, 2015, 3, 6117–6147. 17 E. Aznar, M. Oroval, L. Pascual, J. R. Murguía, R. Martínez-Máñez and F. Sancenón, Chem. Rev., 2016, 116, 561–718. 18 M. Vallet-Regí, M. Colilla and B. González, Chem. Soc. Rev., 2011, 40, 596–607. 19 M. Colilla, B. González and M. Vallet-Regí, Biomater. Sci., 2013, 1, 114–134. 20 A. Corma, Chem. Rev., 1997, 97, 2373–2420. 21 D. E. De Vos, M. Dams, B. F. Sels and P. A. Jacobs, Chem. Rev., 2002, 102, 3615–3640. 22 A. Taguchi and F. Schüth, Microporous Mesoporous Mater., 2005, 77, 1–45. 23 B. Korzeniowska, R. Nooney, D. Wencel and C. McDonagh, Nanotechnology, 2013, 24, 442002. 24 F. Sancenón, L. Pascual, M. Oroval, E. Aznar and R. Martínez-Máñez, ChemistryOpen, 2015, 4, 418–437. 25 D. Douroumis, I. Onyesom, M. Maniruzzaman and J. Mitchell, Crit. Rev. Biotechnol., 2013, 33, 229–245. 26 Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart and J. I. Zink, Chem. Soc. Rev., 2012, 41, 2590–2605. 27 J. M. Rosenholm, J. Zhang, M. Linden and C. Sahlgren, Nanomedicine, 2016, 11, 391–402. 28 E. Climent, R. Martínez-Máñez, F. Sancenón, M. D. Marcos, J. Soto, A. Maquieira and P. Amorós, Angew. Chemie, 2010, 122, 7439–7441. 29 Z. Liu, Y. Huang, F. Pu, J. Ren and X. Qu, Chem. Commun., 2016, 52, 3364–3367. 30 A. Schlossbauer, S. Warncke, P. M. E. Gramlich, J. Kecht, A. Manetto, T. Carell and T. Bein, Angew. Chemie - Int. Ed., 2010, 49, 4734–4737. 31 E. Ruiz-Hernández, A. Baeza and M. Vallet-Regí, ACS Nano, 2011, 5, 1259–1266. 32 L. A. Pray, Nat. Educ., 2008, 1, 100. 33 F. M. Martín-Saavedra, E. Ruíz-Hernández, A. Boré, D. Arcos, M. Vallet-Regí and N. Vilaboa, Acta Biomater., 2010, 6, 4522–4531. 34 C. S. S. R. Kumar and F. Mohammad, Adv. Drug Deliv. Rev., 2011, 63, 789–808. 35 P. I.P. Soares, I. M.M. Ferreira, R. A.G.B.N. Igreja, C. M.M. Novo and J. P.M.R. Borges, Recent Pat. Anticancer. Drug Discov., 2012, 7, 64–73. 36 S. Kossatz, J. Grandke, P. Couleaud, A. Latorre, A. Aires, K. Crosbie-Staunton, R. Ludwig, H. Dähring, V. Ettelt, A. Lazaro-Carrillo, M. Calero, M. Sader, J. Courty, Y. Volkov, A. Prina-Mello, A. Villanueva, Á. Somoza, A. L. Cortajarena, R. Miranda and I. Hilger, Breast Cancer Res., 2015, 17, 1–17. 37 L. Asín, M. R. Ibarra, A. Tres and G. F. Goya, Pharm. Res., 2012, 29, 1319–1327. 38 Y. Zhu and C. Tao, RSC Adv., 2015, 5, 22365–22372. 39 L. Chen, J. Di, C. Cao, Y. Zhao, Y. Ma, J. Luo, Y. Wen, W. Song, Y. Song and L. Jiang, Chem. Commun., 2011, 47, 2850–2852. 40 L. Pascual, I. Baroja, E. Aznar, F. Sancenón, M. D. Marcos, J. R. Murguía, P. Amorós, K. Rurack and R. Martínez-Máñez, Chem. Commun., 2015, 51, 1414–1416. 41 C. Chen, F. Pu, Z. Huang, Z. Liu, J. Ren and X. Qu, Nucleic Acids Res., 2011, 39, 1638–1644. 42 C. Chen, J. Geng, F. Pu, X. Yang, J. Ren and X. Qu, Angew. Chemie Int. Ed., 2011, 50, 882–886. 43 A. Schlossbauer, D. Schaffert, J. Kecht, E. Wagner and T. Bein, J. Am. Chem. Soc., 2008, 130, 12558–12559. 44 D. He, X. He, K. Wang, J. Cao and Y. Zhao, Adv. Funct. Mater., 2012, 22, 4704–4710. 45 H. Liu, Y. Xu, F. Li, Y. Yang, W. Wang, Y. Song and D. Liu, Angew. Chemie Int. Ed., 2007, 46, 2515–2517. 46 X. Yang, D. He, J. Cao, X. He, K. Wang and Z. Zou, RSC Adv., 2015, 5, 84553–84559. 47 C. Chen, L. Zhou, J. Geng, J. Ren and X. Qu, Small, 2013, 9, 2793–2800. 48 Y. Lu and J. Liu, Curr. Opin. Biotechnol., 2006, 17, 580–588. 49 C. Teller, S. Shimron and I. Willner, Anal. Chem., 2009, 81, 9114–9119. 50 I. Willner, B. Shlyahovsky, M. Zayats and B. Willner, Chem Soc Rev, 2008, 37, 1153–1165. 51 M. Hollenstein, Molecules, 2015, 20, 20777–20804. 52 J. Elbaz, S. Shimron and I. Willner, Chem. Commun., 2010, 46, 1209–1211. 53 J. Li, W. Zheng, A. H. Kwon and Y. Lu, Nucleic Acids Res., 2000, 28, 481–488. 54 F. Wang, J. Elbaz, C. Teller and I. Willner, Angew. Chemie Int. Ed., 2011, 50, 295–299. 55 Z. Zhang, D. Balogh, F. Wang and I. Willner, J. Am. Chem. Soc., 2013, 135, 1934–1940. 56 Z. Zhang, F. Wang, D. Balogh and I. Willner, J. Mater. Chem. B, 2014, 2, 4449–4455. 57 J. Zhu, H. Huang, S. Dong, L. Ge and Y. Zhang, Theranostics, 2014, 4, 931–944. 58 D. H. J. Bunka and P. G. Stockley, Nat. Rev. Microbiol., 2006, 4, 588–596. 59 E. Levy-Nissenbaum, A. F. Radovic-Moreno, A. Z. Wang, R. Langer and O. C. Farokhzad, Trends Biotechnol., 2008, 26, 442–449. 60 V. M. Tesmer, S. Lennarz, G. Mayer and J. J. G. Tesmer, Structure, 2012, 20, 1300–1309. 61 C. Tuerk and L. Gold, Science (80-. )., 1990, 249, 505–510. 62 A. D. Ellington and J. W. Szostak, Nature, 1990, 346, 818–822. 63 K. Sefah, D. Shangguan, X. Xiong, M. B. O’Donoghue and W. Tan, Nat. Protoc., 2010, 5, 1169–1185. 64 V. Bagalkot, O. C. Farokhzad, R. Langer and S. Jon, Angew. Chemie Int. Ed., 2006, 45, 8149–8152. 65 G. Zhu, G. Niu and X. Chen, Bioconjug. Chem., 2015, 26, 2186–2197. 66 J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz and P. Couvreur, Chem. Soc. Rev., 2013, 42, 1147–1235. 67 P. P. Deshpande, S. Biswas and V. P. Torchilin, Nanomedicine, 2013, 8, 1509–1528. 68 L. Zhang, Y. Li and J. C. Yu, J. Mater. Chem. B, 2014, 2, 452–470. 69 A. Samanta and I. L. Medintz, Nanoscale, 2016, 8, 9037–9095. 70 J. R. Kanwar, K. Roy and R. K. Kanwar, Crit. Rev. Biochem. Mol. Biol., 2011, 46, 459–477. 71 J. E. Rosenberg, R. M. Bambury, E. M. Van Allen, H. A. Drabkin, P. N. Lara, A. L. Harzstark, N. Wagle, R. A. Figlin, G. W. Smith, L. A. Garraway, T. Choueiri, F. Erlandsson and D. A. Laber, Invest. New Drugs, 2014, 32, 178–187. 72 E. M. Reyes-Reyes, F. R. Šalipur, M. Shams, M. K. Forsthoefel and P. J. Bates, Mol. Oncol., 2015, 9, 1392–1405. 73 L. Le Li, Q. Yin, J. Cheng and Y. Lu, Adv. Healthc. Mater., 2012, 1, 567–572. 74 X. Xie, F. Li, H. Zhang, Y. Lu, S. Lian, H. Lin, Y. Gao and L. Jia, Eur. J. Pharm. Sci., 2016, 83, 28–35. 75 L.-L. Li, M. Xie, J. Wang, X. Li, C. Wang, Q. Yuan, D.-W. Pang, Y. Lu and W. Tan, Chem. Commun., 2013, 49, 5823–5825. 76 C. Wang, L. Cheng and Z. Liu, Theranostics, 2013, 3, 317–330. 77 B. E. Smith, P. B. Roder, X. Zhou and P. J. Pauzauskie, Nanoscale, 2015, 7, 7115–7126. 78 X. Huang, P. K. Jain, I. H. El-Sayed and M. A. El-Sayed, Lasers Med. Sci., 2008, 23, 217–228. 79 L. Xu, L. Cheng, C. Wang, R. Peng and Z. Liu, Polym. Chem., 2014, 5, 1573–1580. 80 Y.-W. Chen, Y.-L. Su, S.-H. Hu and S.-Y. Chen, Adv. Drug Deliv. Rev., 2016, 105, 190–204. 81 J. Wang and J. Qiu, Cancer Res. Front., 2016, 2, 67–84. 82 X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren and X. Qu, Adv. Mater., 2012, 24, 2890–2895. 83 E. Ju, Z. Li, Z. Liu, J. Ren and X. Qu, ACS Appl. Mater. Interfaces, 2014, 6, 4364–4370. 84 K. Wang, H. Yao, Y. Meng, Y. Wang, X. Yan and R. Huang, Acta Biomater., 2015, 16, 196–205. 85 Y. Tang, H. Hu, M. G. Zhang, J. Song, L. Nie, S. Wang, G. Niu, P. Huang, G. Lu and X. Chen, Nanoscale, 2015, 7, 6304–6310. 86 Q. Liu, C. Jin, Y. Wang, X. Fang, X. Zhang, Z. Chen and W. Tan, NPG Asia Mater., 2014, 6, e95. 87 H. Sun and Y. Zu, Small, 2015, 11, 2352–2364. 88 F. Jiang, B. Liu, J. Lu, F. Li, D. Li, C. Liang, L. Dang, J. Liu, B. He, S. A. Badshah, C. Lu, X. He, B. Guo, X. B. Zhang, W. Tan, A. Lu and G. Zhang, Int. J. Mol. Sci., 2015, 16, 23784–23822. 89 V. C. Ozalp, F. Eyidogan and H. A. Oktem, Pharmaceuticals, 2011, 4, 1137–1157. 90 C. Zhu, C. Lu, X. Song, H. Yang and X.-R. Wang, J. Am. Chem. Soc., 2011, 133, 1278–1281. 91 X. He, Y. Zhao, D. He, K. Wang, F. Xu and J. Tang, Langmuir, 2012, 28, 12909–12915. 92 F. J. Hernandez, L. I. Hernandez, A. Pinto, T. Schafer and V. C. Ozalp, Chem Commun, 2013, 49, 1285–1287. 93 Y. Zhang, Z. Hou, Y. Ge, K. Deng, B. Liu, X. Li, Q. Li, Z. Cheng, P. Ma, C. Li and J. Lin, ACS Appl. Mater. Interfaces, 2015, 7, 20696–20706. 94 P. Zhang, F. Cheng, R. Zhou, J. Cao, J. Li, C. Burda, Q. Min and J. J. Zhu, Angew. Chemie - Int. Ed., 2014, 53, 2371–2375. 95 A. M. Krichevsky and G. Gabriely, J. Cell. Mol. Med., 2008, 13, 39–53. 96 R. Kanasty, J. R. Dorkin, A. Vegas and D. Anderson, Nat. Mater., 2013, 12, 967–977. 97 Q. Yin, J. Shen, Z. Zhang, H. Yu and Y. Li, Adv. Drug Deliv. Rev., 2013, 65, 1699–1715. 98 F. Geinguenaud, E. Guenin, Y. Lalatonne and L. Motte, ACS Chem. Biol., 2016, 11, 1180–1191. 99 N. Ž. Knežević and J.-O. Durand, Nanoscale, 2015, 7, 2199–2209. 100 I. I. Slowing, B. G. Trewyn and V. S.-Y. Lin, J. Am. Chem. Soc., 2007, 129, 8845–8849. 101 M. Fujiwara, F. Yamamoto, K. Okamoto, K. Shiokawa and R. Nomura, Anal.Chem., 2005, 77, 8138–8145. 102 F. Gao, P. Botella, A. Corma, J. Blesa and L. Dong, J. Phys. Chem. B, 2009, 113, 1796–1804. 103 F. Qin, Y. Zhou, J. Shi and Y. Zhang, J. Biomed. Mater. Res. - Part A, 2009, 90, 333–338. 104 J. L. Steinbacher and C. C. Landry, Langmuir, 2014, 30, 4396–4405. 105 X. Li, J. Zhang and H. Gu, Langmuir, 2011, 27, 6099–6106. 106 X. Li, Y. Chen, M. Wang, Y. Ma, W. Xia and H. Gu, Biomaterials, 2013, 34, 1391–1401. 107 M.-H. Kim, H. Na, Y. Kim, S. Ryoo, H. S. Cho, K. E. Lee, H. Jeon, R. Ryoo and D.-H. Min, ACS Nano, 2011, 5, 3568–3576. 108 H. K. Na, M. H. Kim, K. Park, S. R. Ryoo, K. E. Lee, H. Jeon, R. Ryoo, C. Hyeon and D. H. Min, Small, 2012, 8, 1752–1761. 109 S. B. Hartono, W. Gu, F. Kleitz, J. Liu, L. He, A. P. J. Middelberg, C. Yu, G. Q. Lu and S. Z. Qiao, ACS Nano, 2012, 6, 2104–2117. 110 D. Niu, Z. Liu, Y. Li, X. Luo, J. Zhang, J. Gong and J. Shi, Adv. Mater., 2014, 26, 4947–4953. 111 X. Huang, Z. Tao, J. C. Praskavich, A. Goswami, J. F. Al-Sharab, T. Minko, V. Polshettiwar and T. Asefa, Langmuir, 2014, 30, 10886–10898. 112 A. K. Meka, Y. Niu, S. Karmakar, S. B. Hartono, J. Zhang, C. X. C. Lin, H. Zhang, A. Whittaker, K. Jack, M. Yu and C. Yu, ChemNanoMat, 2016, 2, 220–225. 113 J. Zhang, M. Niemelä, J. Westermarck and J. M. Rosenholm, Dalt. Trans., 2014, 43, 4115–4126. 114 K. Möller, K. Müller, H. Engelke, C. Bräuchle, E. Wagner and T. Bein, Nanoscale, 2016, 8, 4007–4019. 115 C. E. Ashley, E. C. Carnes, K. E. Epler, D. P. Padilla, G. K. Phillips, R. E. Castillo, D. C. Wilkinson, B. S. Wilkinson, C. a Burgard, R. M. Kalinich, J. L. Townson, B. Chackerian, C. L. Willman, D. S. Peabody, W. Wharton and C. J. Brinker, ACS Nano, 2012, 6, 2174–2188. 116 L. Li, J. Hou, X. Liu, Y. Guo, Y. Wu, L. Zhang and Z. Yang, Biomaterials, 2014, 35, 3840–3850. 117 K. A. Whitehead, R. Langer and D. G. Anderson, Nat. Rev. Drug Discov., 2009, 8, 129–138. 118 Y.-K. Oh and T. G. Park, Adv. Drug Deliv. Rev., 2009, 61, 850–862. 119 D. J. Gary, N. Puri and Y.-Y. Won, J. Control. Release, 2007, 121, 64–73. 120 W. J. Kim and S. W. Kim, Pharm. Res., 2009, 26, 657–666. 121 R. S. Shukla, B. Qin and K. Cheng, Mol Pharm, 2014, 11, 3395–3408. 122 J. Yang, Q. Zhang, H. Chang and Y. Cheng, Chem. Rev., 2015, 115, 5274–5300. 123 Y. Wang, L. Miao, A. Satterlee and L. Huang, Adv. Drug Deliv. Rev., 2015, 87, 68–80. 124 Y. Ding, Z. Jiang, K. Saha, C. S. Kim, S. T. Kim, R. F. Landis and V. M. Rotello, Mol. Ther., 2014, 22, 1075–1083. 125 B. Yu, X. Zhao, L. J. Lee and R. J. Lee, AAPS J., 2009, 11, 195–203. 126 P. Kesharwani, V. Gajbhiye and N. K. Jain, Biomaterials, 2012, 33, 7138–7150. 127 A. Akinc, M. Thomas, A. M. Klibanov and R. Langer, J. Gene Med., 2005, 7, 657–663. 128 A. K. Varkouhi, M. Scholte, G. Storm and H. J. Haisma, J. Control. Release, 2011, 151, 220–228. 129 J. Kim, J. Kim, C. Jeong and W. J. Kim, Adv. Drug Deliv. Rev., 2016, 98, 99–112. 130 R. R. Castillo, M. Colilla and M. Vallet-Regí, Expert Opin. Drug Deliv., 2016, 1–15. 131 D. R. Radu, C. Y. Lai, K. Jeftinija, E. W. Rowe, S. Jeftinija and V. S. Y. Lin, J. Am. Chem. Soc., 2004, 126, 13216–13217. 132 F. Torney, B. G. Trewyn, V. S.-Y. Lin and K. Wang, Nat. Nanotechnol., 2007, 2, 295–300. 133 S. Martin-Ortigosa, J. S. Valenstein, V. S. Y. Lin, B. G. Trewyn and K. Wang, Adv. Funct. Mater., 2012, 22, 3576–3582. 134 S. Martin-Ortigosa, D. J. Peterson, J. S. Valenstein, V. S.-Y. Lin, B. G. Trewyn, L. A. Lyznik and K. Wang, Plant Physiol., 2014, 164, 537–547. 135 R. A. Gemeinhart, D. Luo and W. M. Saltzman, Biotechnol. Prog., 2005, 21, 532–537. 136 S. M. Solberg and C. C. Landry, J. Phys. Chem. B, 2006, 110, 15261–15268. 137 I. I. Slowing, J. L. Vivero-Escoto, C.-W. Wu and V. S. Y. Lin, Adv. Drug Deliv. Rev., 2008, 60, 1278–1288. 138 Y. Jiang, S. Huo, J. Hardie, X. Liang and V. M. Rotello, Expert Opin. Drug Deliv., 2016, 13, 547–559. 139 I. Y. Park, I. Y. Kim, M. K. Yoo, Y. J. Choi, M. H. Cho and C. S. Cho, Int. J. Pharm., 2008, 359, 280–287. 140 T. Xia, M. Kovochich, M. Liong, H. Meng, S. Kabehie, S. George, J. I. Zink and A. E. Nel, ACS Nano, 2009, 3, 3273–3286. 141 X. Wang, S. Masse, G. Laurent, C. Hélary and T. Coradin, Langmuir, 2015, 31, 11078–11085. 142 Y. Kapilov-Buchman, E. Lellouche, S. Michaeli and J.-P. Lellouche, Bioconjug. Chem., 2015, 26, 880–889. 143 M. Yu, Y. Niu, Y. Yang, S. B. Hartono, J. Yang, X. Huang, P. Thorn and C. Yu, ACS Appl. Mater. Interfaces, 2014, 6, 15626–15631. 144 W. Ngamcherdtrakul, J. Morry, S. Gu, D. J. Castro, S. M. Goodyear, T. Sangvanich, M. M. Reda, R. Lee, S. A. Mihelic, B. L. Beckman, Z. Hu, J. W. Gray and W. Yantasee, Adv. Funct. Mater., 2015, 25, 2646–2659. 145 M. Wu, Q. Meng, Y. Chen, Y. Du, L. Zhang, Y. Li, L. Zhang and J. Shi, Adv. Mater., 2015, 27, 215–222. 146 N. D’Onofrio, M. Caraglia, A. Grimaldi, R. Marfella, L. Servillo, G. Paolisso and M. L. Balestrieri, Biochim. Biophys. Acta, 2014, 1846, 1–12. 147 J. Lu, H.-H. Shen, Z. Wu, B. Wang, D. Zhao and L. He, J. Mater. Chem. B, 2015, 3, 7653–7657. 148 Á. Martínez, E. Fuentes-Paniagua, A. Baeza, J. Sánchez-Nieves, M. Cicuéndez, R. Gómez, F. J. de la Mata, B. González and M. Vallet-Regí, Chem. - A Eur. J., 2015, 21, 15651–15666. 149 L. Liu, Z. Guo, Z. Huang, J. Zhuang and W. Yang, Sci. Rep., 2016, 6, 22029. 150 M. Creixell and N. a. Peppas, Nano Today, 2012, 7, 367–379. 151 P. Y. Teo, W. Cheng, J. L. Hedrick and Y. Y. Yang, Adv. Drug Deliv. Rev., 2016, 98, 41–63. 152 M. M. Gottesman, T. Fojo and S. E. Bates, Nat. Rev. Cancer, 2002, 2, 48–58. 153 R. J. Kathawala, P. Gupta, C. R. Ashby Jr. and Z.-S. Chen, Drug Resist. Updat., 2015, 18, 1–17. 154 R. J. Youle and A. Strasser, Nat. Rev. Mol. Cell Biol., 2008, 9, 47–59. 155 P. E. Czabotar, G. Lessene, A. Strasser and J. M. Adams, Nat. Rev. Mol. Cell Biol., 2013, 15, 49–63. 156 X. Wang, M. Chen, J. Zhou and X. Zhang, Int. J. Oncol., 2014, 45, 18–30. 157 A. M. Chen, M. Zhang, D. Wei, D. Stueber, O. Taratula, T. Minko and H. He, Small, 2009, 5, 2673–2677. 158 X. Ma, Y. Zhao, K. W. Ng and Y. Zhao, Chem. - A Eur. J., 2013, 19, 15593–15603. 159 H. Meng, M. Liong, T. Xia, Z. Li, Z. Ji, J. I. Zink and A. E. Nel, ACS Nano, 2010, 4, 4539–4550. 160 H. Meng, W. X. Mai, H. Zhang, M. Xue, T. Xia, S. Lin, X. Wang and Y. Zhao, ACS Nano, 2013, 7, 994–1005. 161 M. Wu, Q. Meng, Y. Chen, L. Zhang, M. Li, X. Cai, Y. Li, P. Yu, L. Zhang and J. Shi, Adv. Mater., 2016, 28, 1963–1969. 162 S. R. Bhattarai, E. Muthuswamy, A. Wani, M. Brichacek, A. L. Castañeda, S. L. Brock and D. Oupicky, Pharm. Res., 2010, 27, 2556–2568. 163 S. B. Hartono, N. T. Phuoc, M. Yu, Z. Jia, M. J. Monteiro, S. Qiao and C. Yu, J. Mater. Chem. B, 2014, 2, 718–726. 164 A. Bertucci, E. A. Prasetyanto, D. Septiadi, A. Manicardi, E. Brognara, R. Gambari, R. Corradini and L. De Cola, Small, 2015, 11, 5687–5695. 165 L. Han, C. Tang and C. Yin, Biomaterials, 2015, 60, 42–52. 166 H. Gu, Y. Chen, X. Wang, T. Liu, D. S. Zhang, Y. Wang and W. Di, Int. J. Nanomedicine, 2015, 10, 2579–2594. 167 Y. T. Chang, P. Y. Liao, H. S. Sheu, Y. J. Tseng, F. Y. Cheng and C. S. Yeh, Adv. Mater., 2012, 24, 3309–3314. 168 K. Wang, Z. Tang, C. J. Yang, Y. Kim, X. Fang, W. Li, Y. Wu, C. D. Medley, Z. Cao, J. Li, P. Colon, H. Lin and W. Tan, Angew. Chemie Int. Ed., 2009, 48, 856–870. 169 D. S. Seferos, D. A. Giljohann, H. D. Hill, A. E. Prigodich and C. A. Mirkin, J. Am. Chem. Soc., 2007, 129, 15477–15479. 170 S. Song, Z. Liang, J. Zhang, L. Wang, G. Li and C. Fan, Angew. Chemie Int. Ed., 2009, 48, 8670–8674. 171 J. Conde, J. Rosa, J. M. de la Fuente and P. V. Baptista, Biomaterials, 2013, 34, 2516–2523. 172 B. Deng, Y. Lin, C. Wang, F. Li, Z. Wang, H. Zhang, X.-F. Li and X. C. Le, Anal. Chim. Acta, 2014, 837, 1–15. 173 C. Feng, S. Dai and L. Wang, Biosens. Bioelectron., 2014, 59, 64–74. 174 Z. Mei, H. Chu, W. Chen, F. Xue, J. Liu, H. Xu, R. Zhang and L. Zheng, Biosens. Bioelectron., 2013, 39, 26–30. 175 M. Hasanzadeh, N. Shadjou, M. de la Guardia, M. Eskandani and P. Sheikhzadeh, TrAC Trends Anal. Chem., 2012, 33, 117–129. 176 M. Etienne, L. Zhang, N. Vilà and A. Walcarius, Electroanalysis, 2015, 27, 2028–2054. 177 S. H. Joo, J. Y. Park, C.-K. Tsung, Y. Yamada, P. Yang and G. A. Somorjai, Nat. Mater., 2009, 8, 126–131. 178 H. Li, J. He, Y. Zhao, D. Wu, Y. Cai, Q. Wei and M. Yang, Electrochim. Acta, 2011, 56, 2960–2965. 179 K. Ren, J. Wu, Y. Zhang, F. Yan and H. Ju, Anal. Chem., 2014, 86, 7494–7499. 180 J. Zhang, Y. Chai, R. Yuan, Y. Yuan, L. Bai and S. Xie, Analyst, 2013, 138, 6938–6945. 181 E. Torres-Chavolla and E. C. Alocilja, Biosens. Bioelectron., 2009, 24, 3175–3182. 182 H. Li, Y. Mu, S. Qian, J. Lu, Y. Wan, G. Fu and S. Liu, Analyst, 2015, 140, 567–573. 183 J. Wang, X.-L. Li, J.-D. Zhang, N. Hao, J.-J. Xu and H.-Y. Chen, Chem. Commun., 2015, 51, 11673–11676. 184 M. Montalti, L. Prodi, E. Rampazzo and N. Zaccheroni, Chem. Soc. Rev., 2014, 43, 4243–4268. 185 X. Wang, P. Song, L. Peng, A. Tong and Y. Xiang, ACS Appl. Mater. Interfaces, 2016, 8, 609–616. 186 Y. Xiong, C. Deng, X. Zhang and P. Yang, ACS Appl. Mater. Interfaces, 2015, 7, 8451–8456. 187 Y. Dai, A. Zhang, J. You, J. Li, H. Xu and K. Xu, RSC Adv., 2015, 5, 77204–77210. 188 J. Tan, N. Yang, Z. Hu, J. Su, J. Zhong, Y. Yang, Y. Yu, J. Zhu, D. Xue, Y. Huang, Z. Lai, Y. Huang, X. Lu and Y. Zhao, Nanoscale Res. Lett., 2016, 11, 298. 189 H. Jo, J. Her and C. Ban, Biosens. Bioelectron., 2015, 71, 129–136. 190 L. Cai, Z. Z. Chen, X. M. Dong, H. W. Tang and D. W. Pang, Biosens. Bioelectron., 2011, 29, 46–52. 191 L. Lu, Y. Qian, L. Wang, K. Ma and Y. Zhang, ACS Appl. Mater. Interfaces, 2014, 6, 1944–1950. 192 S. Wu, H. Zhang, Z. Shi, N. Duan, C. Fang, S. Dai and Z. Wang, Food Control, 2015, 50, 597–604. 193 F. Pu, Z. Liu, J. Ren and X. Qu, Chem. Commun., 2013, 49, 2305–2307. 194 L. B. Fu, J. Y. Zhuang, W. Q. Lai, X. H. Que, M. H. Lu and D. P. Tang, J. Mater. Chem. B, 2013, 1, 6123–6128. 195 W. Song, J. Li, Q. Li, W. Ding and X. Yang, Anal. Biochem., 2015, 471, 17–22. 196 S. Katz, Nature, 1962, 194, 569–569. 197 Y. Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y. Tanaka, Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami and A. Ono, J. Am. Chem. Soc., 2006, 128, 2172–2173. 198 Y. Zhang, Q. Yuan, T. Chen, X. Zhang, Y. Chen and W. Tan, Anal. Chem., 2012, 84, 1956–1962. 199 X. Liang, L. Wang, D. Wang, L. Zeng and Z. Fang, Chem. Commun., 2016, 52, 2192–2194. 200 R. Qian, L. Ding and H. Ju, J. Am. Chem. Soc., 2013, 135, 13282–13285. 201 Y. Wang, M. Lu, J. Zhu and S. Tian, J. Mater. Chem. B, 2014, 2, 5847–5853. 202 S. Zong, Z. Wang, H. Chen, D. Zhu, P. Chen and Y. Cui, IEEE Trans. Nanobioscience, 2014, 13, 55–60.