Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Chemical Reactions Using a Non-Equilibrium Wigner Function Approach

dc.contributor.authorÁlvarez Estrada, Ramón F.
dc.contributor.authorCalvo, Gabriel
dc.date.accessioned2023-06-18T00:01:10Z
dc.date.available2023-06-18T00:01:10Z
dc.date.issued2016-10-19
dc.description.abstractA three-dimensional model of binary chemical reactions is studied. We consider an ab initio quantum two-particle system subjected to an attractive interaction potential and to a heat bath at thermal equilibrium at absolute temperature T>0 . Under the sole action of the attraction potential, the two particles can either be bound or unbound to each other. While at T=0 , there is no transition between both states, such a transition is possible when T>0 (due to the heat bath) and plays a key role as kBT approaches the magnitude of the attractive potential. We focus on a quantum regime, typical of chemical reactions, such that: (a) the thermal wavelength is shorter than the range of the attractive potential (lower limit on T) and (b) (3/2)kBT does not exceed the magnitude of the attractive potential (upper limit on T). In this regime, we extend several methods previously applied to analyze the time duration of DNA thermal denaturation. The two-particle system is then described by a non-equilibrium Wigner function. Under Assumptions (a) and (b), and for sufficiently long times, defined by a characteristic time scale D that is subsequently estimated, the general dissipationless non-equilibrium equation for the Wigner function is approximated by a Smoluchowski-like equation displaying dissipation and quantum effects. A comparison with the standard chemical kinetic equations is made. The time τ required for the two particles to transition from the bound state to unbound configurations is studied by means of the mean first passage time formalism. An approximate formula for τ, in terms of D and exhibiting the Arrhenius exponential factor, is obtained. Recombination processes are also briefly studied within our framework and compared with previous well-known methods.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipJunta de Comunidades de Castilla-La Mancha
dc.description.sponsorshipUnión Europea
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/65359
dc.identifier.doi10.3390/e18100369
dc.identifier.issn1099-4300
dc.identifier.officialurlhttps://doi.org/10.3390/e18100369
dc.identifier.relatedurlhttps://www.mdpi.com/1099-4300/18/10/369
dc.identifier.urihttps://hdl.handle.net/20.500.14352/19156
dc.issue.number10
dc.journal.titleEntropy
dc.language.isoeng
dc.page.initial369
dc.publisherMDPI
dc.relation.projectIDMTM2012-31073 y MTM2015-71200-R
dc.relation.projectIDFIS2015-65078-C2-1-P
dc.relation.projectIDPEII-2014-031-P
dc.relation.projectIDCHRX-CT94-0423
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordWigner function
dc.subject.keywordnonequilibrium and irreversible evolution
dc.subject.keywordmean first passage time
dc.subject.keywordorthogonal polynomials
dc.subject.ucmQuímica física (Física)
dc.subject.ucmQuímica física (Química)
dc.subject.unesco2210 Química Física
dc.titleChemical Reactions Using a Non-Equilibrium Wigner Function Approach
dc.typejournal article
dc.volume.number18
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
entropy-18-00369.pdf
Size:
414.8 KB
Format:
Adobe Portable Document Format

Collections