Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Hybrid machine learning methods for risk assessment in gender-based crime

dc.contributor.authorGonzález Prieto, José Ángel
dc.contributor.authorBru Espino, Antonio Leonardo
dc.contributor.authorNuño, Juan Carlos
dc.contributor.authorGonzález Álvarez, José Luis
dc.date.accessioned2023-06-22T12:33:03Z
dc.date.available2023-06-22T12:33:03Z
dc.date.issued2022-11-21
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2022)
dc.description.abstractGender-based crime is one of the most concerning scourges of contemporary society, and governments worldwide have invested lots of economic and human resources to foretell their occurrence and anticipate the aggressions. In this work, we propose to apply Machine Learning (ML) techniques to create models that accurately predict the recidivism risk of a gender-violence offender. We feed the model with data extracted from the official Spanish VioGen system and comprising more than 40,000 reports of gender violence. To evaluate the performance, two new quality measures are proposed to assess the effective police protection that a model supplies and the overload in the invested resources that it generates. The empirical results show a clear outperformance of the ML-centered approach, with an improvement of up to a 25% with respect to the preexisting risk assessment system. Additionally, we propose a hybrid model that combines the statistical prediction methods with the ML method, permitting authorities to implement a smooth transition from the preexisting model to the ML-based model. To the best of our knowledge, this is the first work that achieves an effective ML-based prediction for this type of crimes against an official dataset.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipUniversidad Complutense de Madrid/Banco de Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/76017
dc.identifier.citationGonzález Prieto, J. Á., Bru Espino, A. L., Nuño, J. C. & González Álvarez, J. L. «Hybrid Machine Learning Methods for Risk Assessment in Gender-Based Crime». Knowledge-Based Systems, vol. 260, enero de 2023, p. 110130. DOI.org (Crossref), https://doi.org/10.1016/j.knosys.2022.110130.
dc.identifier.doi10.1016/j.knosys.2022.110130
dc.identifier.issn0950-7051
dc.identifier.officialurlhttps://doi.org/10.1016/j.knosys.2022.110130
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72808
dc.journal.titleKnowledge-Based Systems
dc.language.isoeng
dc.page.initial110130
dc.publisherElservier
dc.relation.projectIDPID2019-106493RB-I00
dc.relation.projectIDPR27/21-029
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.keywordGender-based crime
dc.subject.keywordHybrid models
dc.subject.keywordQuality measures
dc.subject.keywordRisk assessment
dc.subject.keywordMachine learning
dc.subject.ucmInformática (Informática)
dc.subject.ucmSistemas expertos
dc.subject.unesco1203.17 Informática
dc.titleHybrid machine learning methods for risk assessment in gender-based crimeen
dc.typejournal article
dc.volume.number260
dspace.entity.typePublication
relation.isAuthorOfPublicationc3011bfd-5025-4e49-8f0e-e16ea76da35c
relation.isAuthorOfPublication947fcd0d-5273-454d-a375-b9dc9f7aa49d
relation.isAuthorOfPublication.latestForDiscovery947fcd0d-5273-454d-a375-b9dc9f7aa49d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0950705122012266-main.pdf
Size:
1.83 MB
Format:
Adobe Portable Document Format

Collections