Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The number of inspections until the extinction of an epidemic in a discrete-time stochastic SIS-type model with some applications

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2023

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

This talk deals with an infective process of type SIS, taking place in a closed population of moderate size that is inspected periodically. Our purpose is to study the extinction time counterpart in discrete-time, that is the random variable that counts the total number of inspections that find an active epidemic process. As the underlying mathematical model involves a discrete-time Markov chain (DTMC) with a single absorbing state, the number of inspections in an outbreak is a first-passage time into this absorbing state. Cumulative probabilities are numerically determined from a recursive algorithm and expected values came from explicit expressions. Additionally, I provide several applications derived from the theoretical results. The talk is based on the paper: Gamboa M. and López-Herrero M.J. (2018). On the number of periodic inspections during outbreaks of discrete-time stochastic SIS epidemic models. Mathematics 6, article 128.DOI: 10.1007/s11538-013- 9836-3

Research Projects

Organizational Units

Journal Issue

Description

Keywords