Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Novel Hybrid Artificial Bee Colony-Based Deep Convolutional Neural Network to Improve the Detection Performance of Backscatter Communication Systems

dc.contributor.advisorBrik, Bouziane
dc.contributor.advisorKhan, Junaid Ahmed
dc.contributor.advisorHan, Guangjie
dc.contributor.authorAghakhani, Sina
dc.contributor.authorLarijani, Ata
dc.contributor.authorSadeghi, Fatemeh
dc.contributor.authorMartín De Andrés, Diego
dc.contributor.authorShahrakht, Ali Ahmadi
dc.date.accessioned2024-04-25T17:43:59Z
dc.date.available2024-04-25T17:43:59Z
dc.date.issued2023-05-16
dc.description2023 Descuento MDPI
dc.description.abstractBackscatter communication (BC) is a promising technology for low-power and low-data-rate applications, though the signal detection performance is limited since the backscattered signal is usually much weaker than the original signal. When the detection performance is poor, the backscatter device (BD) may not be able to accurately detect and interpret the incoming signal, leading to errors and degraded communication quality. This can result in data loss, slow data transfer rates, and reduced reliability of the communication link. This paper proposes a novel approach to improve the detection performance of backscatter communication systems using evolutionary deep learning. In particular, we focus on training deep convolutional neural networks (DCNNs) to improve the detection performance of BC. We first develop a novel hybrid algorithm based on artificial bee colony (ABC), biogeography-based optimization (BBO), and particle swarm optimization (PSO) to optimize the architecture of the DCNN, followed by training using a large set of benchmark datasets. To develop the hybrid ABC, the migration operator of the BBO is used to improve the exploitation. Moving towards the global best of PSO is also proposed to improve the exploration of the ABC. Then, we take advantage of the proposed deep architecture to improve the bit-error rate (BER) performance of the studied BC system. The simulation results demonstrate that the proposed algorithm has the best performance in training the benchmark datasets. The results also show that the proposed approach significantly improves the detection performance of backscattered signals compared to existing works
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.fundingtypeDescuento UCM
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.3390/electronics12102263
dc.identifier.essn2079-9292
dc.identifier.officialurlhttps://doi.org/10.3390/electronics12102263
dc.identifier.urihttps://hdl.handle.net/20.500.14352/103538
dc.issue.number10
dc.journal.titleElectronics
dc.language.isoeng
dc.page.final2283
dc.page.initial2263
dc.publisherMDPI
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.cdu004.896
dc.subject.keywordBackscatter communication
dc.subject.keywordDetection performance
dc.subject.keywordBit-error rate
dc.subject.keywordDeep convolutional neural network
dc.subject.keywordHybrid artificial bee colony
dc.subject.ucmRobótica
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2203 Electrónica
dc.titleA Novel Hybrid Artificial Bee Colony-Based Deep Convolutional Neural Network to Improve the Detection Performance of Backscatter Communication Systems
dc.typejournal article
dc.type.hasVersionVOR
dc.volume.number12
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Electronics_12.pdf
Size:
4.52 MB
Format:
Adobe Portable Document Format

Collections