Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Accuracy measures for fuzzy classification in remote sensing

dc.book.titleIPMU 2006 : Information Processing and Management of Uncertainty in Knowledge-Based Systems : proceedings : Eleventh International Conference, Paris, Les Cordeliers, July 2-7, 2006.
dc.contributor.authorGómez González, Daniel
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorBiging, Greg
dc.date.accessioned2023-06-20T13:41:37Z
dc.date.available2023-06-20T13:41:37Z
dc.date.issued2006
dc.descriptionInternational Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (11ª. 2006. París)
dc.description.abstractOver the last decades, many fuzzy classification algorithms have been proposed for image classification,and in particular to classify those images obtained by remote sensing. But relatively little effort has been done to evaluate goodness or effectiveness of such algorithms. Such a problem is most of the times solved by means of a subjective evaluation, meanwhile in the crisp case quality evaluation can be based upon an error matrix, in which the reference data set (the expert classi-fication) and crisp classifiers data set are been compared using specific accuracy measures. In this paper,some of these measures are translated into the fuzzy case, so that more general accuracy measures between fuzzy classifiers and the reference data set can be considered.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGobierno de España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29106
dc.identifier.isbn2-84254-112-X
dc.identifier.officialurlhttp://www.math.s.chiba-u.ac.jp/~yasuda/open2all/Paris06/IPMU2006/HTML/FINALPAPERS/P608.PDF
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53408
dc.language.isoeng
dc.page.final1563
dc.page.initial1556
dc.publication.placeParis
dc.publisherEDK
dc.relation.projectIDMTM2005-08982
dc.rights.accessRightsopen access
dc.subject.cdu004.8
dc.subject.keywordAccuracy assessment
dc.subject.keywordRemote sensing
dc.subject.keywordFuzzy classification
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleAccuracy measures for fuzzy classification in remote sensingen
dc.typebook part
dc.volume.number3
dcterms.references[1] A. Amo, D. Gomez, J. Montero and G. Biging (2001): Relevance and redundancy in fuzzy classification systems. Mathware and Soft Computing 8:203-216 [2] A. Amo, J. Montero, G. Biging and V. Cutello (2004): Fuzzy classification systems. European Journal of Operational 156:459-507. [3] E. Binaghi, P.A. Brivio, P. Ghezzi and . Rampini (1999): A fuzzy set based accuracy assessment of soft classification. Pattern Recognition Letters 20:935948. [4] R.G. Congalton and K. Green (1999): Assessing the Accuracy of Remote Sensed Data: Principles and Practices. Lewis Publishers, London. [5] R.G. Congalton and G. Biging (1992): A pilot study evaluating ground reference data collection efforts for use in forestry inventory. Photogrametic Engineering and Remote Sensing 58:1669- 1671. [6] D. Dubois and H. Prade (1997): The three semantics of fuzzy sets. Fuzzy Sets and Systems 90:141-150. [7] G.M. Foody (1996): Approaches for the production and evaluation of fuzzy land cover classification from remotely sense data. International Journal of RRemote Sensing 17:1317-1340. [8] L. Goldfarb (1992): What is distance and why we do need the metric model for pattern learning. Pattern Recognition 25:431-438. [9] D. Gomez, J. Montero, J. Yañez, C.Poidomani: A graph coloring algorithm approach for image segmentation. Omega (to appear). [10] J.G. Pachon, D. Gomez, J. Montero and J. Yanez (2003): Soft dimension theory. Fuzzy set and Systems 137:137-149. [11] J.G. Pachon, D. G´omez, J. Montero and J. Yañez (2003): Searching for the dimension of binary valued preference relations. International Journal of Approximate Reasoning 33:133-157. [12] M. Laba, S.K. Gregory, J. Braden, D. Ogurcak, E. Hill,E. Fegraus, J. Fiore and S.D. DeGloria (2002): Conventional and fuzzy accuracy assessment of the New York Gap Analysis Project land cover map. Remote Sensing of Enviroment 81:443-455. [13] C. Macharis and J.P. Brans (1998): The GDSS Promethee procedure. Journal of Decision Systems 7:283-307. [14] C.R. Rao (1965): Linear Statistical Inference and its Applications. Wiley, New York. [15] A. Rosenfeld (1985): Distances between fuzzy sets.Pattern Recognition Letters 3:229-233. [16] B. Roy (1990): Decision aid and decision making. European Journal of Operational Research 45:324-331. [17] E.H. Ruspini (1969): A new approach to clustering. Information and Control 15:22-32. [18] T.L. Saaty (1994): Fundamentals of Decision Making with the Analytic Hierarchy Process. RWS Publications, Pittsburgh (Revised in 2000). [19] S.V. Stehman and R.L. Czaplewski (2003): Introduction to sppecial issues on map accuracy. Enviromental and Ecological Statistics 10:301-308. [20] C.E. Woodcock and S. Gopal (2000):Fuzzy set theory and thematics maps:accuracy assessment and area estimation.International Journal Geographical Information Science 14:153-172. [21] L.A. Zadeh (1965): Fuzzy sets. Informations Sciences 8:338-353.
dspace.entity.typePublication
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscovery9e4cf7df-686c-452d-a98e-7b2602e9e0ea

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero121.PDF
Size:
125.83 KB
Format:
Adobe Portable Document Format