Publication:
Micro- and Nano-Antennas for Light Detection

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2005
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Egyptian Society of Solid State Science & Applications
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Antenna-coupled optical detectors, also named as optical antennas, are being developed as detection devices with micro- and nano-scale features for their use in the millimetre, infrared, and visible spectral range. They are optical components that couple the electromagnetic radiation in the visible and infrared wavelengths in the same way that radioelectric antennas do at the corresponding wavelengths. Optical antennas show polarization dependence, tuneability, and rapid time of response. They also can be considered as point detectors and directionally sensitive elements. So far, these detectors have been operated in the mid-infrared with positive results in the visible. The measurement and characterization of optical antennas requires the use of an experimental set-up with nanometric resolution. On the other hand, a computational simulation of the interaction between the material structures and the incoming electromagnetic radiation is needed to explore alternative designs of practical devices. In this contribution we will present the concept of optical and infrared antennas, and some experimental results of their performance, along with the experimental set-up arranged for their characterization in the visible
Description
Acceso libre a la edición electrónica en la web del editor
Keywords
Citation
1. Bor-Iong Twu, S. E. Schwarz, Applied Physics Letters 26(12), 672 (1975). 2. O. Acef, L. Hilico, M. Bahoura, F. Nez, P. De Natale, Optics Communications 109, 428-434, (1994). 3. K. M. Evenson “Frequency measurements from the microwave to the visible, the speed of light, and the redefinition of the meter”, Quantum Metrology and Fundamental Physical Constants, Ed.: P.H. Cutler & A.A. Lucas, Nato ASI Series B: Physics Vol. 98, 181 (1983). 4. D. B. Rutledge, M. S. Muha, IEEE Transaction on Antennas and Propagation, AP-30, 535 (1982). 5. C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, Electronic Letters, 17, 729 (1982). 6. E. N. Grossman, J. E. Sauvageau, D. G. McDonald, Applied Physics Letters, 59, 3225 (1991). 7. I. Wilke, Y. Oppliger, W. Herrmann, F.K. Kneubühl, Applied Physics A 58, 329 (1994). 8. C. Fumeaux, W. Herrmann, F.K. Kneubühl, H. Rothuizen, Infrared Physics & Technology 39, 123 (1998). 9. C. Fumeaux, J. Alda, G.D. Boreman, Optics Letters 24, 1629 (1999). 10. B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin and D.W. Pohl, J. Chem. Phys. 112, 7761 (2000). 11. Michael A. Paesler, Patrick J. Moyer, “Near-field optics: theory, instrumentation, and applications”, Wiley-Interscience, New York (1996). 12. S. Kawata, “Nano-Optics”, Springer series in optical sciences 84, Springer, Berlin, (2002). 13. S. Kawata (Ed.), "Near Field Optics and Surface Plasmon Polaritons", Springer Series in Applied Physics 81, Springer Verlag, Berlin/Heidelberg (2001). 14. R.C. Dunn, “Near-field scanning optical microscopy” Chem. Rev. 99 (10), 2891 Oct, 1999. 15. D. W. Pohl, “Near field optics seen as an antenna problem”, in “Near-Field Optics: Principles, Applications” / The Second Asia-Pacific Workshop on Near Field Optics, Beijing, China October 20 -23, 1999", EDITOR M.Ohtsu, X. Zhu 9 (2000). 16. G. Boreman, Optical Engineering Mag. 2, 47 (2002). 17. J. Alda, C. Fumeaux, M. Gritz, D. Spencer, G. Boreman, Infrared Physics and Technology, 41, 1 (2000). 18. J. Alda, C. Fumeaux, I. Codreanu, J.A. Schaefer, G. D. Boreman, Applied Optics 38, 3993 (1999). 19. F. J. Gonzalez, M. A. Gritz, C. Fumeaux, G. D. Boreman, International Journal of Infrared and Millimeter Waves 23, 785 (2002). 20. E. H. Hauge, J. A. Støvneng, Reviews of Modern Physics 61, 917 (1989) 21. G. D. Boreman, C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, Optics Letters 23, 1912 (1998). 22. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, G. D. Boreman, Infrared Physics and Technology 41, 271 (2000). 23. F. J. González, J. Alda, B. Ilic, G. D. Boreman, Applied Optics, 43, 6067 (2004). 24. J. M. Rico-García, J. M. López-Alonso, B. Lail, G. Boreman, J. Alda, Proceedings SPIE, 5612, 216 (2004). 25. F. J. González, B. Ilic, J. Alda, G. Boreman, IEEE Journal of Selected Topics in Quantum Electronics, 11, 117 (2005). 26. J. Alda, J. M. Rico-García, J. M. López-Alonso, G. Boreman, Nanotechnology, 16, S230 (2005). 27. J. Alda, J. M. López-Alonso, J. M. Rico-García, J. Zoido, G. Boreman, Proceedings SPIE, 5407, 226 (2004). 28. J. M. López-Alonso, B. Monacelli, J. Alda, G. D. Boreman. Optical Engineering (in press) (2005). 29. J. M. López-Alonso, B. Monacelli, J. Alda, G. D. Boreman, Applied Optics (in press) (2005). 30. J. González, C. Fumeaux, J. Alda, G. Boreman, Microwave and Optical Technology Letters, 26, 291 (2000).
Collections