A new ocean tide loading model in the Canary Islands region

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
A new high-resolution (1/12◦ ×l/12◦) regional ocean tide model for Canary Islands region (Spain), by assimilating TOPEX/Poseidon altimetry data and tide gauge measurements into a hydrodynamic model, is presented. This regional ocean tide model is also refined along all the coastlines in the Canary region, using automatic grid discretization and bilinear interpolation. The new ocean model obtained reveals differences in some areas when we compare it with global models. The results confirm that data assimilation for high resolution models improves the ocean tide estimation in complex areas as the Canarian Archipelago. Gravity tide measurements, which are available in two islands of the Canarian Archipelago, have been used to test the ocean tide model. In addition, a comparison of nine global ocean tide models, supplemented with the regional model, is done for the M2 and O1 tidal constituents. The tidal gravity residues reveal that, for the M2 wave, there exists a dependence of the global ocean tide model considered. In general, the agreement of the nine ocean models is rather similar, although TPXO.2 and SCHW displays the most discrepant results. Among the ocean tide models, which are in close agreement at both places for M2 and O1 tidal waves, no one of them give better results than other.
15th International Symposium on Earth Tides, Aug 02-06, 2004, Ottawa, Canada
UCM subjects
Unesco subjects
A´ lvarez, E., Pe´rez, B., Rodr´ıguez, I., 1997. A description of tides in the Eastern North Atlantic. Progr. Oceanogr. 40, 217–244. Arnoso, J., 1996. Modelizaci´on y Evaluaci´on de Efectos Oce´anicos Indirectos sobre las Mareas Terrestres en el ´area de las Islas Canarias. PhD Tesis, Universidad Complutense de Madrid. Arnoso, J., Fern´andez, J., Vieira, R., V´elez, E.J., Venedikov, A.P., 2000. Results of tidal gravity observations in Tenerife, Canary Islands. Bulletin d’Information des Marees Terrestres 132, 10283–10290. Arnoso, J., Fern´andez, J., Vieira, R., 2001a. Interpretation of tidal gravity anomalies in Lanzarote, Canary Islands. J. Geodynam. 31, 341–354. Arnoso, J., Vieira, R., Velez, E., Van Ruymbeke, M., Venedikov, A., 2001b. Studies of tides and instrumental performance of three gravimeters at Cueva de los Verdes (Lanzarote, Spain). J. Geod. Soc. Jpn. 47 (1), 70–75. Baker, T.F., 1980. Tidal gravity in Brita: tidal loading the spatial distribution of the marine tide. Geophys. J. R. Astronom. Soc. 62, 249–267. Baker, T.F., Bos, M., 2003. Validating Earth and ocean tide models using tidal gravity measurements. Geophys. J. Int. 152, 468–485. Cartwright, D.E., 1977. Oceanic tides. Rep. Progr. Phys. 40, 666–708. Dehant, V., Defraine, P., Wahr, J., 1999. Tides for a convective Earth. J. Geophys. Res. 104 (B1), 1035–1058. Ducarme, B., Sun, H.P., Xu, J.Q., 2002. New investigation of tidal gravity results from GGP network. Bulletin d’Information des Marees Terrestres 136, 10761–10776. Eanes, R.J., Bettadpur, S., 1995. The CSR3.0 global ocean tide model, CSR-TM-95-06. Center for Space Research, University of Texas, Austin. Egbert, G.D., Bennet, A.F., Foreman, G.G., 1994. TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. 99 (C12), 24.821–24.852. Egbert, G.D., Bennet, A.F., 1996. Data assimilation methods for ocean tides. In: Malonotte-Rizzoli, P. (Ed.), Modern Approaches to Data Assimilation in Ocean Modelling. Elsevier Science, pp. 147–179. Egbert, G.D., 1997. Tidal data inversion: Interpolation and inference. Progr. Oceanogr. 40, 53–80. Egbert, G.D., Erofeeva, S.Y., 2002. Efficient inverse modeling of barotropic ocean tides. J. Oceanic Atmos. Technol. 19 (2), 183–204. Farrell, W.E., 1972. Deformation of the earth by surface loads. Rev. Geophys. Space Phys. 10, 761–797. Francis, O., Mazzega, P., 1991. What we can learn about ocean tides from tide gauges and gravity loading measurements? In: Kakkuri, K. (Ed.), Proceedings of the 11th International Symposium on Earth Tides. Schweitzerbart Verlag, Stuttgart, pp. 287–298. Jentzsch, G., Knudsen, P., Ramatschi, M., 2000. Ocean tidal loading affecting precise geodetic observations on Greenland: error account of surface deformations by tidal gravity measurements. Phys. Chem. Earth (A) 25 (4), 401–407. Jourdin, F., Francis, O., Vincent, P., Mazzega, P., 1991. Some results of heterogeneous data inversions for ocean tides. J. Geophys. Res. 96, 20267–20288. Koblinsky, C.J., Ray, R.D., Beckeley, B.D.,Wang, Y.M., Tsaoussi, L., Brenner, A.,Williamson, R., 1999. NASA ocean altimeter Pathfinder project report 1: Data Processing Handbook. NASA/TM-1998-208605. Le Provost, C., Lyard, F., Molines, M., Genco, L., Rabilloud, F., 1998. A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set. J. Geophys. Res. 103, 5513–5529. Mart´ınez, A., Perez, E., Bruno, M., 1999. Variation of the tidal properties around Gran Canaria. Oceanologica Acta 22 (1), 19–30. Matsumoto, K., Takanezawa, T., Ooe, M., 2000. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. J. Oceanogr. 56, 567–581. Melchior, P., De Becker,M., 1983.Adiscussion ofworld-wide measurements of tidal gravity respect to ocean interactions, lithosphere heterogeneities, Earth’s flattening and inertial forces. Phys. Earth Planet. Interiors 31, 27–53. Ray, R.D., 1999. A global ocean tide model from TOPEX/Poseidon altimeter: GOT99.2. NASA Technical Memorandum, TM-209478, 58 pp. REDMAR: Red de Mare´ografos de Puertos del Estado. Informe Anual 2003, Spain. Schwiderski, E.W., 1980. Ocean tides, II, A hydrodynamic interpolation model. Marine Geodesy 3, 219–255. Smith,W.H.F., Sandwell, D.T., 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277 (5334), 1956–1962. Tamura, Y., 1987. A Harmonic development of the Tide-generating Potential. Bulletin d’Informations Mar´ees Terrestres 99, 6813–6855. Venedikov, A.P., Arnoso, J., Vieira, R., 2003. VAV: a program for tidal data processing. Comput. Geosci. 29, 487–502. Venedikov, A.P., Arnoso, J., Vieira, R., 2005. New version of program VAV for tidal data processing. Comput. Geosci. 31, 667–669. Vieira, R.,Van Ruymbecke, M., Fern´andez, J.,Toro, C., 1991. The Lanzarote Underground Laboratory. Cahiers du Centre Europe´en deG´eodynamique et de S´eismology 4, 71–86. Wessel, P., Smith, W.H.F., 1996. A global, self-consistent, hierachical, high-resolution shoreline database. J. Geophys. Res. 101, 8741–8743. Zahel, W., 1991. Modeling ocean tides with and without assimilating data. J. Geophys. Res. 96, 20379–20391.