Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A note on spatial uniformation for Fisher-KPP type equations with a concentration dependent diffusion

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.date.accessioned2023-06-20T03:49:42Z
dc.date.available2023-06-20T03:49:42Z
dc.date.issued2012
dc.description.abstractWe prove a pointwise gradient estimate for the solution of the Cauchy problem associated to the quasilinear Fisher-KPP type equation with a diffusion coefficient ϕ(u) satisfying that ϕ(0) = 0, ϕ(1) = 1 and a source term ψ(u) which is vanishing only for levels u = 0 and u = 1. As consequence we prove that the bounded weak solution becomes instantaneously a continuous function even if the initial datum is merely a bounded function.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipDGISPI (Spain)
dc.description.sponsorshipUCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29667
dc.identifier.issn1752-3583
dc.identifier.officialurlhttp://inderscience.metapress.com/content/k376h50312414g61/fulltext.pdf
dc.identifier.relatedurlhttp://inderscience.metapress.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44514
dc.issue.number1-2
dc.journal.titleInternational Journal of Dynamical Systems and Differential Equations
dc.language.isoeng
dc.page.final77
dc.page.initial70
dc.publisherInderscience publishers
dc.relation.projectIDFIRST (238702)
dc.relation.projectIDMTM200806208
dc.relation.projectIDResearch Group MOMAT (910480)
dc.rights.accessRightsrestricted access
dc.subject.cdu519.9
dc.subject.keywordGradient estimates
dc.subject.keywordquasilinear Fisher-KPP type equations
dc.subject.keywordregularising effects
dc.subject.keywordspatial uniformation.
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleA note on spatial uniformation for Fisher-KPP type equations with a concentration dependent diffusion
dc.typejournal article
dc.volume.number4
dcterms.referencesBenilan, Ph. and Díaz, J.I. (2004) ‘Pointwise gradient estimates of solutions of onedimensional nonlinear parabolic problems’, J. Evolution Equations, Vol. 3,pp.557–602. Diaz, J.I. (2012) ‘On some onedimensional parabolic reaction-diffusion-convection equations’, Journal of Mathematical Analysis and Applications, to appear. Díaz, J.I. and Kamin, S. (2012) ‘Convergence to travelling waves for quasilinear fisher-KPP type equations’, Journal of Mathematical Analysis and Applications, to appear. DiBenedetto, E. (1983) ‘Continuity of weak solutions to a general porous medium equation’,Indiana Univ. Math. J., Vol. 32, No. 1, pp.83–118. Fisher, R.A. (1937) ‘The wave of advance of advantageous genes’, Annals of Eugenics, Vol. 7, pp.355–369. Gilding, B.H. (1976) ‘Hölder continuity of solutions of parabolic equations’, J. London Math. Soc., Vol. s2-13, No. 1, pp.103-106. Kalashnikov, A.S. (1974) ‘The propagation of disturbances in problems of non-linear heat conduction with asorption’, USSR Comput. Math. and Math. Phys., Vol. 14, pp.70–85. Kamin, S. and Rosenau, P. (2004) ‘Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation’, Rendiconti Mat. Acc. Lincei Cl. Sci. Fis. Mat. Natur., Vol. 15, pp.271–280. Kersner, R. (1984) ‘Degenerate parabolic equations with general nonlinearities’, Nonlinear Anal., Vol. 4, pp.1043–1062. Kolmogorov, A., Petrovsky, I. and Piscunov, N. (1937) Etude de l’equation de la diffusion avec croissance de la quantité de matiere et son application a un probleme biologique,Bulletin Univ. Moscow, Ser. Internationale, Math., Mec., in Pelce, P. (Ed.), Vol. 1, pp.1–25. English translation, Dynamics of Curved Fronts, Academic Press, Boston, 1988,pp.105–130. Kruzhkov, S.N. (1969) ‘Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications’, Math. Zam. English tr. in Math. Notes V, Vol. 6, No. 1, pp.97–98, pp.517–523. Ladyzenskaya, O.A., Solonnikov, V.A. and Ural’tseva, N.N. (1968) Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, Vol. 23,Amer. Math. Soc, Providence, RI. Oleinik, O.A., Kalashnikov, A.S. and Chzhou, Y-L. (1958) ‘The Cauchy problem and boundary problems for equations of the type of nonstationary filtration’, Izv. Akad.Nauk. SSSR Ser. Mat, Vol. 22, pp.667–704 (Russian).
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
154.pdf
Size:
103.84 KB
Format:
Adobe Portable Document Format

Collections