Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Perturbations both trigger and delay seizures due to generic properties of slow-fast relaxation oscillators

dc.contributor.authorPérez Cervera, Alberto
dc.contributor.authorHlinka, Jaroslav
dc.date.accessioned2023-06-17T08:30:43Z
dc.date.available2023-06-17T08:30:43Z
dc.date.issued2021
dc.description.abstractThe mechanisms underlying the emergence of seizures are one of the most important unresolved issues in epilepsy research. In this paper, we study how perturbations, exogenous or endogenous, may promote or delay seizure emergence. To this aim, due to the increasingly adopted view of epileptic dynamics in terms of slow-fast systems, we perform a theoretical analysis of the phase response of a generic relaxation oscillator. As relaxation oscillators are effectively bistable systems at the fast time scale, it is intuitive that perturbations of the non-seizing state with a suitable direction and amplitude may cause an immediate transition to seizure. By contrast, and perhaps less intuitively, smaller amplitude perturbations have been found to delay the spontaneous seizure initiation. By studying the isochrons of relaxation oscillators, we show that this is a generic phenomenon, with the size of such delay depending on the slow flow component. Therefore, depending on perturbation amplitudes, frequency and timing, a train of perturbations causes an occurrence increase, decrease or complete suppression of seizures. This dependence lends itself to analysis and mechanistic understanding through methods outlined in this paper. We illustrate this methodology by computing the isochrons, phase response curves and the response to perturbations in several epileptic models possessing different slow vector fields. While our theoretical results are applicable to any planar relaxation oscillator, in the motivating context of epilepsy they elucidate mechanisms of triggering and abating seizures, thus suggesting stimulation strategies with effects ranging from mere delaying to full suppression of seizures.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/76885
dc.identifier.doi10.1371/journal.pcbi.1008521
dc.identifier.issn1553-734X
dc.identifier.officialurlhttps://doi.org/10.1371/journal.pcbi.1008521
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7330
dc.issue.number3
dc.journal.titlePlos computational biology
dc.language.isoeng
dc.page.initiale1008521
dc.publisherPublic Library of Science
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu517
dc.subject.cdu61
dc.subject.ucmAnálisis combinatorio
dc.subject.ucmMedicina
dc.subject.unesco1202.05 Análisis Combinatorio
dc.subject.unesco32 Ciencias Médicas
dc.titlePerturbations both trigger and delay seizures due to generic properties of slow-fast relaxation oscillators
dc.typejournal article
dc.volume.number17
dcterms.references1.Rubin JE, Terman D. Geometric singular perturbation analysis of neuronal dynamics. In: Handbook of dynamical systems. vol. 2. Elsevier; 2002. p. 93–146. 2.Rinaldi S, Scheffer M. Geometric analysis of ecological models with slow and fast processes. Ecosystems. 2000;3(6):507–521. 3.Ashwin P, Ditlevsen P. The middle Pleistocene transition as a generic bifurcation on a slow manifold. Climate dynamics. 2015;45(9-10):2683–2695. 4.Moehlis J. Canards in a Surface Oxidation Reaction. Journal of Nonlinear Science. 2002;12(4). 5.Coombes S, Terry JR. The dynamics of neurological disease: integrating computational, experimental and clinical neuroscience. European Journal of Neuroscience. 2012;36(2):2118–2120. 6.Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475–482. pmid:24730690 7.Jiruska P, De Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K. Synchronization and desynchronization in epilepsy: controversies and hypotheses. The Journal of physiology. 2013;591(4):787–797. 8.Milton J, Jung P. Epilepsy as a dynamic disease. Springer Science & Business Media; 2013. 9.Breakspear M, Roberts J, Terry JR, Rodrigues S, Mahant N, Robinson P. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cerebral Cortex. 2006;16(9):1296–1313. 10.Da Silva FL, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN. Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia. 2003;44:72–83. 11.Baier G, Goodfellow M, Taylor PN, Wang Y, Garry DJ. The importance of modeling epileptic seizure dynamics as spatio-temporal patterns. Frontiers in physiology. 2012;3:281. 12.Goodfellow M, Schindler K, Baier G. Intermittent spike–wave dynamics in a heterogeneous, spatially extended neural mass model. Neuroimage. 2011;55(3):920–932. 13.Suffczynski P, Kalitzin S, Da Silva FL. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience. 2004;126(2):467–484. 14.Saggio ML, Spiegler A, Bernard C, Jirsa VK. Fast–slow bursters in the unfolding of a high codimension singularity and the ultra-slow transitions of classes. The Journal of Mathematical Neuroscience. 2017;7(1):7. 15.Wang Y, Goodfellow M, Taylor PN, Baier G. Phase space approach for modeling of epileptic dynamics. Physical Review E. 2012;85(6):061918. 16.Taylor PN, Baier G. A spatially extended model for macroscopic spike-wave discharges. Journal of computational neuroscience. 2011;31(3):679–684. 17.Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of seizure dynamics. Brain. 2014;137(8):2210–2230. 18.Desroches M, Faugeras O, Krupa M. Slow-fast transitions to seizure states in the Wendling-Chauvel neural mass model. Opera Medica et Physiologica. 2016;(3-4). 19.Chizhov AV, Zefirov AV, Amakhin DV, Smirnova EY, Zaitsev AV. Minimal model of interictal and ictal discharges “Epileptor-2”. PLoS computational biology. 2018;14(5):e1006186. 20.Baier G, Taylor PN, Wang Y. Understanding epileptiform after-discharges as rhythmic oscillatory transients. Frontiers in computational neuroscience. 2017;11:25. 21.Ersöz EK, Modolo J, Bartolomei F, Wendling F. Neural mass modeling of slow-fast dynamics of seizure initiation and abortion. PLoS computational biology. 2020;16(11):e1008430. 22.Chang WC, Kudlacek J, Hlinka J, Chvojka J, Hadrava M, Kumpost V, et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nature neuroscience. 2018;21(12):1742. pmid:30482946 23.Barbarosie M, Avoli M. CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. Journal of Neuroscience. 1997;17(23):9308–9314. 24.Karoly PJ, Freestone DR, Boston R, Grayden DB, Himes D, Leyde K, et al. Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity. Brain. 2016;139(4):1066–1078. pmid:26912639 25.Avoli M, de Curtis M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Progress in neurobiology. 2011;95(2):104–132. 26.Huberfeld G, de La Prida LM, Pallud J, Cohen I, Le Van Quyen M, Adam C, et al. Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nature neuroscience. 2011;14(5):627–634. pmid:21460834 27.Hoppensteadt FC, Izhikevich EM. Weakly connected neural networks. vol. 126. Springer Science & Business Media; 2012. 28.Izhikevich EM. Dynamical systems in neuroscience. MIT press; 2007. 29.Desroches M, Guckenheimer J, Krauskopf B, Kuehn C, Osinga HM, Wechselberger M. Mixed-mode oscillations with multiple time scales. Siam Review. 2012;54(2):211–288. 30.Berglund N, Gentz B. Noise-induced phenomena in slow-fast dynamical systems: a sample-paths approach. Springer Science & Business Media; 2006. 31.Grasman J. Asymptotic methods for relaxation oscillations and applications. vol. 63. Springer Science & Business Media; 2012. 32.Mishchenko E. Differential equations with small parameters and relaxation oscillations. vol. 13. Springer Science & Business Media; 2013. 33.Krupa M, Szmolyan P. Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions. SIAM journal on mathematical analysis. 2001;33(2):286–314. 34.Guckenheimer J. Isochrons and phaseless sets. Journal of Mathematical Biology. 1975;1(3):259–273. 35.Fenichel N. Persistence and smoothness of invariant manifolds for flows. Indiana Univ Math J. 1971/1972;21:193–226. 36.Tikhonov AN. Systems of differential equations containing small parameters in the derivatives. Matematicheskii sbornik. 1952;73(3):575–586. 37.Gradshtein I. Application of AM Lyapunov’s theory of stability to the theory of differential equations with small coefficients in the derivatives. Matematicheskii Sbornik. 1953;74(2):263–286. 38.Pontryagin LS, Rodygin L. Periodic solution of a system of ordinary differential equations with a small parameter in the terms containing derivatives. In: Doklady Akademii Nauk. vol. 132. Russian Academy of Sciences; 1960. p. 537–540. 39.Sacré P, Franci A. Singularly perturbed phase response curves for relaxation oscillators. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE; 2016. p. 4680–4685. 40.Langfield P, Krauskopf B, Osinga HM. Solving Winfree’s puzzle: The isochrons in the FitzHugh-Nagumo model. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2014;24(1):013131. 41.Wendling F, Bartolomei F, Bellanger J, Chauvel P. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. European Journal of Neuroscience. 2002;15(9):1499–1508. 42.El Houssaini K, Bernard C, Jirsa VK. The Epileptor model: a systematic mathematical analysis linked to the dynamics of seizures, refractory status epilepticus and depolarization block. Eneuro. 2020;. 43.Proix T, Bartolomei F, Guye M, Jirsa VK. Individual brain structure and modelling predict seizure propagation. Brain. 2017;140(3):641–654. 44.Ashwin P, Coombes S, Nicks R. Mathematical frameworks for oscillatory network dynamics in neuroscience. The Journal of Mathematical Neuroscience. 2016;6(1):2. 45.Schultheiss NW, Prinz AA, Butera RJ. Phase response curves in neuroscience: theory, experiment, and analysis. Springer Science & Business Media; 2011. 46.Rinzel J, Ermentrout GB. Analysis of neural excitability and oscillations. Methods in neuronal modeling. 1998;2:251–292. 47.Izhikevich EM. Phase equations for relaxation oscillators. SIAM Journal on Applied Mathematics. 2000;60(5):1789–1804. 48.Pérez-Cervera A, M-Seara T, Huguet G. Global phase-amplitude description of oscillatory dynamics via the parameterization method. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2020;30(8):083117. 49.Gast R, Schmidt H, Knösche TR. A mean-field description of bursting dynamics in spiking neural networks with short-term adaptation. Neural Computation. 2020;32(9):1615–1634. 50.El Houssaini K, Ivanov AI, Bernard C, Jirsa VK. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities. Physical Review E. 2015;91(1):010701. 51.Proix T, Bartolomei F, Chauvel P, Bernard C, Jirsa VK. Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy. Journal of Neuroscience. 2014;34(45):15009–15021. 52.Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nature Reviews Neurology. 2014;10(5):261–270. 53.Guillamon A, Huguet G. A computational and geometric approach to phase resetting curves and surfaces. SIAM Journal on Applied Dynamical Systems. 2009;8(3):1005–1042. 54.Fenichel N. Asymptotic stability with rate conditions. Indiana University Mathematics Journal. 1974;23(12):1109–1137. 55.Pérez-Cervera A, Tere M, Huguet G, et al. A geometric approach to Phase Response Curves and its numerical computation through the parameterization method. Journal of Nonlinear Science. 2019;29(6):2877–2910.
dspace.entity.typePublication
relation.isAuthorOfPublicationde495841-c58a-47a5-b14f-3c4ba7dc9f96
relation.isAuthorOfPublication.latestForDiscoveryde495841-c58a-47a5-b14f-3c4ba7dc9f96

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
perez_cervera_perturbations.pdf
Size:
3.11 MB
Format:
Adobe Portable Document Format

Collections