Investigation of the electronic structure of the charge-ordered phase in epitaxial and polycrystalline La_(1-x)Ca_(x)MnO_(3) (x = 0.55, 0.67) perovskite manganites

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this work, the charge transport properties of charge ordered (CO) La_(1−x)Ca_(x)MnO_(3) (x=0.55,0.67) epitaxial thin films and polycrystals are discussed following the recent controversy of localized electron states versus weakly or delocalized charge-density wave states in CO manganites. The transport properties were investigated by current versus voltage, direct current resistivity versus temperature, local activation energy versus temperature, magnetoresistance, and alternating current admittance spectroscopy measurements, which all indicated a localized electronic structure in the single CO phase. Delocalized charge anomalies previously observed may be restricted to phase separated materials.
© 2008 The American Physical Society. This work was supported by the Leverhulme Trust. The author wishes to thank Ulrich Weiss, Ortwin Hess, and Paul Midgley for useful discussions. Thanks to Gavin Burnell, Diana Sanchez, and James Loudon for the help provided. Thanks to Derek Sinclair for his help.
Unesco subjects
1) C. C. Homes, S. V. Dordevic, G. D. Gu, Q. Li, T. Valla, J. M. Tranquada, Phys. Rev. Lett., 96, 257002 (2006). 2) E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds (Springer, Berlin, 2003). 3) S.-W. Cheong, H. Y. Hwang, in Colossal Magnetoresistive Oxides, edited by Y. Tokura (Gordon & Breach, Reading, 2000). 4) M. Coey, Nature (London), 430, 155 (2004). 5) H. Yoshizawa, H. Kawano, Y. Tomioka, Y. Tokura, Phys. Rev. B, 52, (R)13145 (1995). 6) H. Y. Hwang, T. T. M. Palstra, S.-W. Cheong, B. Batlogg, Phys. Rev. B, 52, 15046 (1995). 7) A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Nature (London), 388, 50 (1997). 8) V. Kiryukhin, D. Casa, J. P. Hill, B. Keimer, A. Vigliante, Y. Tomioka, Y. Tokura, Nature (London), 386, 813 (1997). 9) S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, L. H. Chen, Science, 264, 413 (1994). 10) M. Uehara, S. Mori, C. H. Chen, S. W. Cheong, Nature (London), 399, 560 (1999) --- C. Israel, M. J. Calderón, N. D. Mathur, Mater. Today, 10 (10), 24 (2007). 11) L. Zhang, C. Israel, A. Biswas, R. L. Greene, A. de Lozanne, Science, 298, 805 (2002). 12) J. C. Loudon, N. D. Mathur, P. A. Midgley, Nature (London), 420, 797 (2002). 13) N. D. Mathur, P. Littlewood, Phys. Today, 56 (1), 25 (2003). 14) J. Tao, J. M. Zuo, Phys. Rev. B, 69, 180404(R) (2004). 15) M. B. Salamon, M. Jaime, Rev. Mod. Phys., 73, 583 (2001). 16) G. C. Milward, M. J. Calderon, P. Littlewood, Nature (London), 433, 607 (2005). 17) J. C. Loudon, S. Cox, A. J. Williams, J. P. Attfield, P. B. Littlewood, P. A. Midgley, N. D. Mathur, Phys. Rev. Lett., 94, 097202 (2005). 18) L. Brey, Phys. Rev. Lett., 92, 127202 (2004). 19) J. M. Zuo, J. Tao, Phys. Rev. B, 63, 060407(R) (2001). 20) C. H. Chen, S. Mori, S. W. Cheong, J. Phys. IV, 9, Pr10 (1999). 21) C. H. Chen, S. Mori, S. W. Cheong, Phys. Rev. Lett., 83, 4792 (1999). 22) N. Kida, M. Tonouchi, Phys. Rev. B, 66, 024401 (2002). 23) J. Loudon, S. Cox, N. D. Mathur, P. Midgley, Philos. Mag., 85, 999 (2005). 24) R. H. Friend, D. Jerome, J. Phys. C, 12, 1441 (1979). 25) G. Grüner, Rev. Mod. Phys., 60, 1129 (1988). 26) G. Grüner, Density Waves in Solids (Perseus, Cambridge, MA, 1994). 27) K. H. Kim, S. Lee, T. W. Noh, S.-W. Cheong, Phys. Rev. Lett., 88, 167204 (2002). 28) B. I. Shklovskii, A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984). 29) R. J. Cava, R. M. Fleming, P. Littlewood, E. A. Rietman, L. F. Schneemeyer, R. G. Dunn, Phys. Rev. B, 30, 3228 (1984). 30) P. Segransan, A. Janossy, C. Berthier, J. Marcus, P. Butaud, Phys. Rev. Lett., 56, 1854 (1986). 31) A. Zettl, G. Grüner, Phys. Rev. B, 26, 2298 (1982). 32) A. Wahl, S. Mercone, A. Pautrat, M. Pollet, C. Simon, D. Sedmidubsky, Phys. Rev. B, 68, 094429 (2003). 33) J. A. Becker, C. B. Green, G. L. Pearson, Bell Syst. Tech. J., 26, 170 (1947). 34) R. M. Fleming, L. F. Schneemeyer, Phys. Rev. B, 28, 6996 (1983). 35) G. X. Tessema, N. P. Ong, Phys. Rev. B, 31, 1055 (1985). 36) U. Weiss, Quantum Dissipative Systems (World Scientific Publishing, Singapore, 1999). 37) D. Sánchez, L. E. Hueso, L. Granja, P. Levy, N. D. Mathur, Appl. Phys. Lett., 89, 142509 (2006). 38) M. E. Raikh, L. I. Glazman, Phys. Rev. Lett., 75, 128 (1995). 39) A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1983). 40) Impedance Spectroscopy, edited by J. R. Macdonald (Wiley, New York, 1987). 41) R. Schmidt, in Ceramic Materials Research Trends, edited by P. B. Lin (Nova Science, Hauppauge, 2007). 42) N. D. Mathur, Nat. Mater., 5, 849 (2006). 43) S. Cox, E. Rosten, J. C. Chapman, S. Kos, M. J. Calderon, D.-J. Kang, P. B. Littlewood, P. A. Midgley, N. D. Mathur, Phys. Rev. B, 73, 132401 (2006). 44) S. Cox, J. Singleton, R. D. McDonald, A. Migliori, P. B. Littlewood, Nat. Mater., 7, 25 (2008).