Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A class of optimization problems in radiotherapy dosimetry planning

dc.contributor.authorLópez Alfonso, Juan Carlos
dc.contributor.authorButazzo, Giuseppe
dc.contributor.authorGarcía Archilla, B.
dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorNúñez, L.
dc.date.accessioned2023-06-20T00:16:39Z
dc.date.available2023-06-20T00:16:39Z
dc.date.issued2012-09
dc.descriptionIMI (Instituto de Matemática Interdisciplinar)
dc.description.abstractRadiotherapy is an important clinical tool to fight malignancies. To do so, a key point consists in selecting a suitable radiation dose that could achieve tumour control without inducing significant damage to surrounding healthy tissues. In spite of recent significant advances, any radiotherapy planning in use relies principally on experience-based decisions made by clinicians among several possible choices. In this work we consider a mathematical problem related to that decision-making process. More precisely, we assume that a well-defined target region, called planning target volume (PTV), is given. We then consider the question of determining which radiation distribution is able to achieve a maximum impact on tumour cells and a minimum one in healthy ones. Such dose distribution is defined as the solution of a multi-parameter minimization problem over the PTV and healthy tissues, subject to a number of constraints arising from clinical and technical requirements. For any choice of parameters, sufficient conditions for the existence of a unique solution of that problem are derived. Such solution is then approximated by means of a suitable numerical algorithm. Finally, some examples are considered, on which the dependence on model parameters of different clinical efficiency indexes is discussed.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipFundación Mutua Madrileña
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16466
dc.identifier.doi10.3934/dcdsb.2012.17.1651
dc.identifier.issn1531-3492
dc.identifier.officialurlhttp://aimsciences.org/journals/pdfs.jsp?paperID=7351&mode=full
dc.identifier.relatedurlhttp://aimsciences.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42317
dc.issue.number6
dc.journal.titleDiscrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences
dc.language.isoeng
dc.page.final1672
dc.page.initial1651
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.projectIDMTM2011-22656
dc.relation.projectIDMTM2009-07849
dc.rights.accessRightsrestricted access
dc.subject.cdu616-006.04
dc.subject.keywordRadiotherapy dosimetry planning
dc.subject.keywordlinear quadratic model
dc.subject.keywordoptimization
dc.subject.keywordnumerical simulation
dc.subject.keywordvariational problems
dc.subject.ucmOncología
dc.subject.unesco3201.01 Oncología
dc.titleA class of optimization problems in radiotherapy dosimetry planning
dc.typejournal article
dc.volume.number17
dcterms.referencesM. Abramowitz and I. A. Stegun, eds., \Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Reprint of the 1972 edition, Dover Publications, Inc., New York, 1992. G. W. Barendsen, Dose fractionation, dose rate and iso-e ect relationships for normal tissue responses, Int. J. Radiat. Oncol. Biol. Phys., 8 (1982), 1981{1997. B. J. Blonigen, R. D. Steinmetz, L. Levin, M. A. Lamba, R. E. Warnick and J. C. Breneman, Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery, Int. J. Radiat. Oncol. Biol. Phys., 77 (2010), 996{1001. D. J. Brenner, L. R. Hlatky, P. J. Hahnfeldt, Y. Huang and R. K. Sachs, The linear-quadratic model and most other common radiobiological models result in similar predictions of time- dose relationships, Radiat. Res., 150 (1998), 83{91. G. Buttazzo, \Semicontinuity, Relaxation and Integral Representation in the Calculus of variations," Pitman Res. Notes Math. Ser., 207, Longman Scientic & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. G. Buttazzo, M. Giaquinta and S. Hildebrandt, \One-Dimensional Variational Problems: An Introduction," Oxford Lecture Series in Mathematics and its Applications, 15, The Clarendon Press, Oxford University Press, New York, 1998. R. H. Byrd, J. Nocedal and R. A. Waltz, KNITRO: An integrated package for nonlinear op- timization, in \Large-Scale Nonlinear Optimization," Nonconvex Optim. Appl., 83, Springer, New York, (2006), 35{59. A. Cappuccio, M. A. Herrero and L. Nu~nez, Biological optimization of tumor radiosurgery, Med. Phys., 36 (2009), 98{104. A. Cappuccio, M. A. Herrero and L. Nu~nez, Tumour radiotherapy and its mathematical modelling, in \Mathematics, Developmental Biology and Tumour Growth," Contemporary Mathematics, 492, Amer. Math. Soc., Providence, RI, (2009), 77{102. D. J. Carlson, R. D. Stewart, X. A. Li, K. Jennings, J. Z. Wang and M. Guerrero, Comparison of in vitro and in vivo = ratios for prostate cancer, Phys. Med. Biol., 49 (2004), 4477{4491. D. D. Dionysiou, G. S. Stamatakos, D. Gintides, N. Uzunoglu and K. Kyriaki, Critical pa- rameters determining standard radiotherapy treatment outcome for glioblastoma multiforme: A computer simulation, Open Biomed. Eng. J., 2 (2008), 43{51. R. E. Drzymala, R. Mohan, L. Brewster, J. Chu, M. Goitein, W. Harms and M. Urie, Dose- volume histograms, Int. J. Radiat. Oncol. Biol. Phys., 21 (1991), 71{78. B. Emami, J. Lyman, A. Brown, L. Coia, M. Goitein, J. E. Munzenrider, B. Shank, L. J. Solin and M. Wesson, Tolerance of normal tissue to therapeutic irradiation, Int. J. Radiat. Oncol. Biol. Phys., 21 (1991), 109{122. L. Feuvret, G. No�el, J. J. Mazeron and P. Bey, Conformity index: A review, Int. J. Radiat. Oncol. Biol. Phys., 64 (2006), 333{342. A. Giese, R. Bjerkvig, M. E. Berens and M. Westphal, Cost of migration: Invasion of malig- nant gliomas and implications for treatment, J. Clin. Oncol., 21 (2003), 1624{1636. G. G. Steel, \Basic Clinical Radiobiology," 3rd edition, Oxford University Press, NY, 2002. T. S. Kehwar, Analytical approach to estimate normal tissue complication probability using best t of normal tissue tolerance doses into the NTCP equation of the linear quadratic model, J. Cancer Res. Ther., 1 (2005), 168{179. T. S. Kehwar and S. C. Sharma, Use of normal tissue tolerance doses into linear quadratic equation to estimate normal tissue complication probability, April 2003. Available from: http: //www.rooj.com/Normal%20Tissue%20Comp.htm. J. Nocedal and S. J. Wright, \Numerical Optimization," 2nd edition, Springer Series in Operations Research, Springer Verlag, 2006. J. R. Palta and T. R. Mackie, eds., \Intensity Modulated Radiation Therapy: The State of the Art," Medical Physics Publishing, Madison, Wisconsin, 2003. E. Shaw, R. Kline, M. Gillin, et al., Radiation therapy oncology group: Radiosurgery quality assurance guidelines, Int. J. Radiat. Oncol. Biol. Phys., 27 (1993), 1231{1239. R. Timmerman and L. Xing, eds., \Image Guided and Adaptive Radiation Therapy," Published by Wolters Kluwer Lippincott Williams & Wilkins Health in Philadelphia, 2010. C. M. West, S. E. Davidson, S. A. Roberts and R. D. Hunter, Intrinsic radiosensitivity and prediction of patient response to radiotherapy for carcinoma of the cervix , Br. J. Cancer, 68 (1993), 819{823. C. M. West, S. E. Davidson, S. A. Roberts and R. D. Hunter, The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix , Br. J. Cancer, 76 (1997), 1184{1190. C. M. West, Invited review: Intrinsic radiosensitivity as a predictor of patient response to radiotherapy, Br. J. Radiol., 68 (1995), 827{837. M. Yoon, S. Y. Park, D. Shin, S. B. Lee, H. R. Pyo, D. Y. Kim and K. H. Cho, A new homogeneity index based on statistical analysis of the dose-volume histogram, J. Appl. Clin. Med. Phys., 8 (2007), 9{17. M. Zaider and G. N. Minerbo, Tumour control probability: A formulation applicable to any temporal protocol of dose delivery, Phys. Med. Biol., 45 (2000), 279{293. Radiation quantities and units, ICRU Report 33, 1980. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT), ICRU Report 50, 1993. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT), ICRU Report 62, 1999. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT), ICRU Report 83, 2010. Received September 2011; revised
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero100.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format

Collections