Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Disjointly strictly singular operators and interpolation

dc.contributor.authorGarcía del Amo Jiménez, Alejandro José
dc.contributor.authorHernández, Francisco L.
dc.contributor.authorRuiz Bermejo, César
dc.date.accessioned2023-06-20T16:56:37Z
dc.date.available2023-06-20T16:56:37Z
dc.date.issued1996
dc.description.abstractInterpolation properties of the class of disjointly strictly singular operators on Banach lattices are studied. We also give some applications to compare the lattice structure of two rearrangement invariant function spaces. In particular, we obtain suitable analytic characterisations of when the inclusion map between two Orlicz function spaces is disjointly strictly singular.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16121
dc.identifier.doi10.1017/S0308210500023222
dc.identifier.issn0308-2105
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8246472
dc.identifier.relatedurlhttp://journals.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57479
dc.issue.number5
dc.journal.titleProceedings of the Royal Society of Edinburgh: Section A Mathematics
dc.language.isoeng
dc.page.final1026
dc.page.initial1011
dc.publisherCambridge University Press
dc.relation.projectIDPB91-0377
dc.relation.projectIDPB94-0243
dc.rights.accessRightsrestricted access
dc.subject.cdu517.982.27
dc.subject.cdu517.98
dc.subject.cdu517.518.85
dc.subject.keywordOrlicz spaces
dc.subject.keywordinterpolation properties
dc.subject.keyworddisjointly strictly singular operators on Banach lattices
dc.subject.keywordlattice structure
dc.subject.keywordrearrangement invariant function spaces
dc.subject.keywordOrlicz function spaces
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleDisjointly strictly singular operators and interpolation
dc.typejournal article
dc.volume.number126
dcterms.referencesC. Bennett and R. Sharpley. Interpolation of operators (New York: Academic Press, 1988). J. Bergh and J. Lofstrom. Interpolation spaces. An introduction (Berlin: Springer, 1976). O. J. Beucher. On interpolation of strictly (co-) singular linear operators. Proc. Roy. Soc. Edinburgh Sect. A 112(1989), 263-9. F. Cobos, T. Kiihn and T. Schonbek. One-sided compactness results for Aronszajn-Gagliardo functors. J. Funct. Anal. 106 (1992), 274-313. S. J. Dilworth. A scale of linear spaces related to the Lp scale. Illinois J. Math. 34 (1990), 140-58. A. García del Amo. Clases de operadores singulares en reticulos de Banach. Desigualdades con pesos y funciones maximales (Ph.D. Thesis, Universidad Complutense de Madrid, 1993). A. García del Amo and F. L. Hernández. On embeddings of function spaces into If +13. Contemp. Math. 144(1993), 107-13. J. Gustavsson and J. Peetre. Interpolation of Orlicz spaces. Studia Math. 60 (1977), 33-59. S. Heinrich. Closed operator ideals and interpolation. J. Funct. Anal. 35 (1980), 397-411. F. L. Hernández. Disjointly strictly-singular operators in Banach lattices. 18th Winter School on Abstract Analysis (Srni, 1990). Acta Univ. Carolin.-Math. Phys. 31 (1990), 35-40. F. L. Hernández and B. Rodríguez-Salinas. On lp-complemented copies in Orlicz spaces II. Israel J. Math. 68 (1989), 27-55. F. L. Hernández and B. Rodríguez-Salinas. Orlicz spaces containing singular lp-complemented copies. Function spaces Conference (Poznan, 1989). Teubner-Texte Math. 120 (1991), 15-22. F. L. Hernández and C. Ruiz. Universal classes of Orlicz function spaces. Pacific J. Math. 155 (1992), 87-98. H. Hudzik. Notes on Orlicz spaces. Function spaces Conference (Poznan, 1989). Teubner-Texte Math. 120(1989), 23-9. N. J. Kalton. Orlicz sequence spaces without local convexity. Math. Proc. Cambridge Philos. Soc. 81 (1977), 253-77. J. Lindenstrauss and L. Tzafriri. Classical Banach spaces, Vol. II (Berlin: Springer, 1979). N. J. Nielsen. On the Orlicz function spaces LM(0, oo). Israel J. Math. 20 (1975), 237-59. S. Ya. Novikov. Boundary spaces for inclusion map between rearrangement invariant spaces. Function spaces (Poznan, 1992). Collect. Math. 44 (1993), 211-15. S. Ya. Novikov, E. M. Semenov and E. V. Tokarev. The structure of subspaces of the space Ap(p). Soviet Math. Dokl. 20 (1979), 760-1. L. E. Persson. Interpolation with a parameter function. Math. Scand. 59 (1986), 199-222. A. Pietsch. Operator ideals (Amsterdam: North-Holland, 1980). N. Popa. Uniqueness of the symmetric structure in Lp(fi) for 0 < p < 1. Rev. Roumaine Math. Pures Appl. 27(1982), 1061-89. N. Popa. Interpolation theorems for rearrangement invariant p-spaces of functions, 0 < p < 1, and some applications. 10th Winter School on Abstract Analysis (Srni, 1982). Rend. Circ. Mat. Palermo (2) 1982, Suppl. 2 (1982), 199-216. C. Ruiz. Estructura de espacios de Orlicz de funciones y de sucesiones con pesos. Subespacios distinguidos (Ph.D. Thesis, Universidad Complutense de Madrid, 1990). H. H. Schaefer. Banach lattices and positive operators (Berlin: Springer, 1974).
dspace.entity.typePublication
relation.isAuthorOfPublication99883408-190b-4f61-be14-23d8126a2710
relation.isAuthorOfPublication.latestForDiscovery99883408-190b-4f61-be14-23d8126a2710

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HerRod07.pdf
Size:
766.68 KB
Format:
Adobe Portable Document Format

Collections