Aviso: por motivos de mantenimiento y mejora del repositorio, mañana martes día 13 de mayo, entre las 9 y las 14 horas, Docta Complutense, no funcionará con normalidad. Disculpen las molestias.
 

Detection of shell companies in financial institutions using dynamic social network

dc.contributor.authorRocha Salazar, José de Jesús
dc.contributor.authorSegovia Vargas, María Jesús
dc.contributor.authorCamacho Miñano, Juana María Del Mar
dc.date.accessioned2023-06-22T10:50:57Z
dc.date.available2023-06-22T10:50:57Z
dc.date.issued2022
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2022)
dc.description.abstractShell companies work in financial interaction with other companies to commit several crimes such as concealing resources of illicit origin (money laundering), tax fraud (tax evasion), corruption, bribery, and drug trafficking, among others. This interaction can be represented by a set of nodes and connections that show the multiple relationships between entities over time. The current article proposes to detect transactions related to shell companies in financial systems, using legal person attributes and incorporating self and group comparisons into dynamic social networks. The months of June 2019, September 2020, and November 2021 are taken as evaluation periods to test the proposed methodology. Our methodology performs better than the traditional rules method, yielding balanced accuracies and true positive rates above 0.9 and 0.85, respectively. The false-positive rate was also lower in the proposed model than in the rule system for most evaluation periods. The latter translates into a reduction in costs by compliance investigations.
dc.description.departmentDepto. de Administración Financiera y Contabilidad
dc.description.departmentDepto. de Economía Financiera y Actuarial y Estadística
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73458
dc.identifier.doi10.1016/j.eswa.2022.117981
dc.identifier.issn0957-4174
dc.identifier.officialurlhttps://doi.org/10.1016/j.eswa.2022.117981
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71777
dc.journal.titleExpert Systems with Applications
dc.language.isoeng
dc.page.initial117981
dc.publisherElsevier
dc.relation.projectIDPID2020-115700RB-I00
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordShell companies
dc.subject.keywordSocial networks
dc.subject.keywordCrime
dc.subject.keywordDynamic
dc.subject.keywordDetection
dc.subject.ucmEmpresas
dc.subject.unesco5311 Organización y Dirección de Empresas
dc.titleDetection of shell companies in financial institutions using dynamic social network
dc.typejournal article
dc.volume.number207
dspace.entity.typePublication
relation.isAuthorOfPublication44aad0f9-4f64-46ee-a6b7-e9a317fa42fd
relation.isAuthorOfPublicationce97b4c1-b2f9-47ba-80ef-29e0f4a261cd
relation.isAuthorOfPublication.latestForDiscovery44aad0f9-4f64-46ee-a6b7-e9a317fa42fd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S095741742201209X-main.pdf
Size:
11.55 MB
Format:
Adobe Portable Document Format

Collections