Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Fourier extension operator of distributions in Sobolev spaces of the sphere and the Helmholtz equation

dc.contributor.authorBarceló, Juan Antonio
dc.contributor.authorFolch Gabayet, Magali
dc.contributor.authorLuque Martínez, Teresa Elvira
dc.contributor.authorPérez Esteva, Salvador
dc.contributor.authorVilela, María de la Cruz
dc.date.accessioned2024-02-07T08:42:38Z
dc.date.available2024-02-07T08:42:38Z
dc.date.issued2020
dc.description.abstractThe purpose of this paper is to characterize the entire solutions of the homogeneous Helmholtz equation (solutions in ℝd) arising from the Fourier extension operator of distributions in Sobolev spaces of the sphere with α ∈ ℝ. We present two characterizations. The first one is written in terms of certain L2-weighted norms involving real powers of the spherical Laplacian. The second one is in the spirit of the classical description of the Herglotz wave functions given by P. Hartman and C. Wilcox. For α > 0 this characterization involves a multivariable square function evaluated in a vector of entire solutions of the Helmholtz equation, while for α < 0 it is written in terms of an spherical integral operator acting as a fractional integration operator. Finally, we also characterize all the solutions that are the Fourier extension operator of distributions in the sphere.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationBarceló JA, Folch-Gabayet M, Luque T, Pérez-Esteva S, Vilela MC. 2021 The Fourier extension operator of distributions in Sobolev spaces of the sphere and the Helmholtz equation. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 151, 1768–1789. (doi:10.1017/prm.2020.80)
dc.identifier.doi10.1017/prm.2020.80
dc.identifier.essn1473-7124
dc.identifier.issn0308-2105
dc.identifier.officialurlhttps://doi.org/10.1017/prm.2020.80
dc.identifier.relatedurlhttps://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
dc.identifier.urihttps://hdl.handle.net/20.500.14352/99754
dc.journal.titleProceedings of the Royal Society of Edinburgh Section A: Mathematics
dc.language.isoeng
dc.page.final1789
dc.page.initial1768
dc.publisherCambridge University Press
dc.rights.accessRightsrestricted access
dc.subject.keywordElliptic equations and systems
dc.subject.keywordHarmonic analysis in several variables
dc.subject.keywordLinear function spaces and their rules
dc.subject.ucmAnálisis matemático
dc.subject.unesco12 Matemáticas
dc.titleThe Fourier extension operator of distributions in Sobolev spaces of the sphere and the Helmholtz equationen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number151
dspace.entity.typePublication
relation.isAuthorOfPublication2c50f5ea-88b0-4329-bb0d-75d54cd1efdc
relation.isAuthorOfPublication.latestForDiscovery2c50f5ea-88b0-4329-bb0d-75d54cd1efdc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The_Fourier_extension_operator.pdf
Size:
402.07 KB
Format:
Adobe Portable Document Format

Collections