The Fourier extension operator of distributions in Sobolev spaces of the sphere and the Helmholtz equation
dc.contributor.author | Barceló, Juan Antonio | |
dc.contributor.author | Folch Gabayet, Magali | |
dc.contributor.author | Luque Martínez, Teresa Elvira | |
dc.contributor.author | Pérez Esteva, Salvador | |
dc.contributor.author | Vilela, María de la Cruz | |
dc.date.accessioned | 2024-02-07T08:42:38Z | |
dc.date.available | 2024-02-07T08:42:38Z | |
dc.date.issued | 2020 | |
dc.description.abstract | The purpose of this paper is to characterize the entire solutions of the homogeneous Helmholtz equation (solutions in ℝd) arising from the Fourier extension operator of distributions in Sobolev spaces of the sphere with α ∈ ℝ. We present two characterizations. The first one is written in terms of certain L2-weighted norms involving real powers of the spherical Laplacian. The second one is in the spirit of the classical description of the Herglotz wave functions given by P. Hartman and C. Wilcox. For α > 0 this characterization involves a multivariable square function evaluated in a vector of entire solutions of the Helmholtz equation, while for α < 0 it is written in terms of an spherical integral operator acting as a fractional integration operator. Finally, we also characterize all the solutions that are the Fourier extension operator of distributions in the sphere. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.citation | Barceló JA, Folch-Gabayet M, Luque T, Pérez-Esteva S, Vilela MC. 2021 The Fourier extension operator of distributions in Sobolev spaces of the sphere and the Helmholtz equation. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 151, 1768–1789. (doi:10.1017/prm.2020.80) | |
dc.identifier.doi | 10.1017/prm.2020.80 | |
dc.identifier.essn | 1473-7124 | |
dc.identifier.issn | 0308-2105 | |
dc.identifier.officialurl | https://doi.org/10.1017/prm.2020.80 | |
dc.identifier.relatedurl | https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/99754 | |
dc.journal.title | Proceedings of the Royal Society of Edinburgh Section A: Mathematics | |
dc.language.iso | eng | |
dc.page.final | 1789 | |
dc.page.initial | 1768 | |
dc.publisher | Cambridge University Press | |
dc.rights.accessRights | restricted access | |
dc.subject.keyword | Elliptic equations and systems | |
dc.subject.keyword | Harmonic analysis in several variables | |
dc.subject.keyword | Linear function spaces and their rules | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 12 Matemáticas | |
dc.title | The Fourier extension operator of distributions in Sobolev spaces of the sphere and the Helmholtz equation | en |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 151 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2c50f5ea-88b0-4329-bb0d-75d54cd1efdc | |
relation.isAuthorOfPublication.latestForDiscovery | 2c50f5ea-88b0-4329-bb0d-75d54cd1efdc |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- The_Fourier_extension_operator.pdf
- Size:
- 402.07 KB
- Format:
- Adobe Portable Document Format