Self-diffusion in simple models: Systems with long-range jumps
Loading...
Download
Full text at PDC
Publication date
1997
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citation
Abstract
We review some exact results for the morion of a tagged particle in simple models. Then, we study the density dependence of the sill-diffusion coefficient D_(N)(ρ) in lattice systems with simple symmetric exclusion in which the particles can jump, with equal rates, to a set of N neighboring sites. We obtain positive upper and lower bounds on F_(N)(ρ) = N{(1 - ρ) - [D_(N)(ρ)/D_(N)(0)]}/[ρ(1 - ρ)] for ρ is an element of [0, 1]. Computer simulations for the square, triangular, and one-dimensional lattices suggest that FN becomes effectively independent of N for N greater than or equal to 20.
Description
© 1997 Plenum Publishing Corporation. We thank C. Landim, S. Olla, M. S. Ripoll, and H. T. Yau for useful discussions. This work was supported by NSF Grant 92-13424 4-20946. R.B. was also supported by D.G.I.C. y T. (Spain), project PB94-0265.