Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Evolutionary trajectory planner for multiple UAVs in realistic scenarios

dc.contributor.authorBesada Portas, Eva
dc.contributor.authorTorre Cubillo, Luis de la
dc.contributor.authorCruz García, Jesús Manuel de la
dc.contributor.authorAndrés Toro, Bonifacio de
dc.date.accessioned2023-06-20T03:32:45Z
dc.date.available2023-06-20T03:32:45Z
dc.date.issued2010-08
dc.description© 2010 IEEE. This work was supported by the Community of Madrid under Project "COSICOLOGI" S-0505/DPI-0391, by the Spanish Ministry of Education and Science under Project DPI2006-15661-C02-01 and Project DPI2009-14552-C02-01, and by the European Aeronautic Defense and Space Company (Construcciones Aeronauticas Sociedad Anonima) under Project 353/2005. The work of E. Besada-Portas was supported by the Spanish Postdoctoral Grant EX-2007-0915 associated with the Prince of Asturias Endowed Chair of the University of New Mexico, University of New Mexico, Albuquerque, NM. This paper was presented in part at the Genetic Evolutionary Computation Conference, Atlanta, GA, 2008, and in part at the 8th International FLINS Conference, Madrid, Spain, 2008.
dc.description.abstractThis paper presents a path planner for multiple unmanned aerial vehicles (UAVs) based on evolutionary algorithms (EAs) for realistic scenarios. The paths returned by the algorithm fulfill and optimize multiple criteria that 1) are calculated based on the properties of real UAVs, terrains, radars, and missiles and 2) are structured in different levels of priority according to the selected mission. The paths of all the UAVs are obtained with the multiple coordinated agents coevolution EA (MCACEA), which is a general framework that uses an EA per agent (i.e., UAV) that share their optimal solutions to coordinate the evolutions of the EAs populations using cooperation objectives. This planner works offline and online by means of recalculating parts of the original path to avoid unexpected risks while the UAV is flying. Its search space and computation time have been reduced using some special operators in the EAs. The successful results of the paths obtained in multiple scenarios, which are statistically analyzed in the paper, and tested against a simulator that incorporates complex models of the UAVs, radars, and missiles, make us believe that this planner could be used for real-flight missions.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCommunity of Madrid
dc.description.sponsorshipSpanish Ministry of Education and Science
dc.description.sponsorshipEuropean Aeronautic Defense and Space Company (Construcciones Aeronauticas Sociedad Anonima)
dc.description.sponsorshipSpanish Postdoctoral Grant
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21363
dc.identifier.doi10.1109/TRO.2010.2048610
dc.identifier.issn1552-3098
dc.identifier.officialurlhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5471080
dc.identifier.relatedurlhttp://ieeexplore.ieee.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43817
dc.issue.number4
dc.journal.titleIEEE Transactions on Robotics
dc.language.isoeng
dc.page.final634
dc.page.initial619
dc.publisherIEEE-INST Electrical Electronics Engineers Inc
dc.relation.projectIDS-0505/DPI-0391
dc.relation.projectIDDPI2006-15661-C02-01
dc.relation.projectIDDPI2009-14552-C02-01
dc.relation.projectID353/2005
dc.relation.projectIDEX-2007-0915
dc.rights.accessRightsopen access
dc.subject.cdu004
dc.subject.keywordAlgorithm-Based Approach
dc.subject.keywordUnmanned Air Vehicles
dc.subject.keywordAerial Vehicles
dc.subject.keywordOptimization
dc.subject.keywordAircraft Aerial Robotics
dc.subject.keywordMultiobjective Evolutionary Algorithms (EAs)
dc.subject.keywordPath Planning for Multiple Mobile Robot Systems
dc.subject.ucmRobótica
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleEvolutionary trajectory planner for multiple UAVs in realistic scenarios
dc.typejournal article
dc.volume.number26
dcterms.references[1] L. R. Newcome, Unmanned Aviation: A Brief History of Unmanned Aerial Vehicle (Library of Flight Series). Reston, VA: AIAA, 2004. [2] T. Samad, J. S. Bay, and D. Godbole, “Network-centric systems for military operations in urban terrain: The role of UAVs,” in Proc. IEEE, Jan. 2007, vol. 95, no. 1, pp. 92–107. [3] J. A. Goldman, “Path planning problems and solutions,” in Proc. Nat. Aerosp. Electron. Conf., 1994, pp. 105–108. [4] R. J. Szczerba, “Threat netting for real-time, intelligent route planners,”in Proc. IEEE Symp. Inf., Decis. Control, 1999, pp. 377–382. [5] J. Bellingham, “Coordination and control of UAV fleets using mixedinteger linear programming,” Ph.D. dissertation, Mass. Inst. Technol.,Cambridge, MA, 2002. [6] Y. Kuwata and J. P. How, “Three dimensional receding horizon control for UAVs,” presented at the AIAA Guid., Navigat., Control Conf. Exhib., AIAA, Monterey, CA, 2002. [7] A. Richards and J. P. How, “Aircraft trajectory planning with collision avoidance using mixed-integer linear programming,” in Proc. Amer. Control Conf., 2002, pp. 1936–1941. [8] J. J. Ruz, O. Ar´evalo, J. M. de la Cruz, and G. Pajares, “Using MILP for UAVs trajectory optimization under radar detection risk,” in Proc. 11th IEEE Int. Conf. Emerging Technol. Factory Autom., 2006, pp. 1–4. [9] P. Melchior, B. Orsoni, O. Lavialle, A. Poty, and A. Oustaloup, “Consideration of obstacle danger level in path planning using A* and fastmarching optimisation: Comparative study,” Signal Process., vol. 83, no. 11, pp. 2387–2396, 2003. [10] R. J. Szczerba, P. Galkowski, I. Glickstein, and N. Ternullo, “Robust algorithm for real-time route planning,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. 3, pp. 869–878, Jul. 2000. [11] K. Trovato, “A* planning in discrete configuration spaces of autonomous systems,” Ph.D. dissertation, Amsterdam Univ., Amsterdam, The Netherlands, 1996. [12] Y. Qu, Q. Pan, and J. Yan, “Flight path planning of UAV based on heuristically search and genetic algorithms,” in Proc. 31st Annu. Conf. IEEE Ind. Electron. Soc., Nov. 2005, p. 5. [13] A. Raghunathan, V. Gopal, D. Subramanian, L. T. Biegler, and T. Samad,“Dynamic optimization strategies for 3d conflict resolution of multiple aircraft,” AIAA J. Guid., Control Dyn., vol. 27, no. 4, pp. 586–594, Jul.– Aug. 2004. [14] S. Mittal and K. Deb, “Three-dimensional offline path planning for UAVs usingmultiobjective evolutionary algorithms,” in Proc. IEEE Congr. Evol. Comput., 2007, vol. 7, pp. 3195–3202. [15] I. K. Nikolos, K. P. Valavanis, N. C. Tsourveloudis, and A. N. Kostaras, “Evolutionary algorithm based offline/online path planner for UAV navigation,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 33, no. 6, pp. 898–912, Dec. 2003. [16] I. Hasircioglu, H. R. Topcuoglu, and M. Ermis, “3-d path planning for the navigation of unmanned aerial vehicles by using evolutionary algorithms,” in Proc. Genet. Evol. Comput. Conf., 2008, pp. 1499–1506. [17] Y. V. Pehlivanoglu, O. Baysal, and A. Hacioglu, “Vibrational genetic algorithm based path planner for autonomous UAV in spatial data based environments,” in Proc. 3rd Int. Conf. Recent Adv. Space Technol., 2007, vol. 7, pp. 573–578. [18] I. K. Nikolos, N. C. Tsourveloudis, and K. P. Valavanis, “Evolutionary algorithm based path planning for multiple UAV cooperation,” in Advances in Unmanned Aerial Vehicles. Berlin, Germany: Springer-Verlag, Jan. 2007, pp. 309–340. [19] I. K. Nikolos and N. C. Tsourvelouds, “Path planning for cooperating unmanned vehicles over 3-d terrain,” Inf. Control, Autom. Robot., vol. 24, pp. 153–168, Jan. 2009. [20] C. Zheng, L. Li, F. Xu, F. Sun, and M. Ding, “Evolutionary route planner for unmanned air vehicles,” IEEE Trans. Robot., vol. 21, no. 4, pp. 609–620, Aug. 2005. [21] R. Zhang, C. Zheng, and P.Yan, “Route planning for unmanned air vehicles with multiple missions using an evolutionary algorithm,” in Proc. IEEE 3rd Int. Conf. Nat. Comput., 2007, pp. 1499–1506. [22] J. M. de la Cruz, E. Besada-Portas, L. de la Torre, B. Andr´es-Toro, and J. A. Lopez-Orozco, “Evolutionary path planner for UAVs in realistic environments,” in Proc. Genet. Evol. Comput. Conf., 2008, pp. 1447–1484. [23] J. M. de la Cruz, E. Besada Portas, L. de la Torre, and B. Andr´es Toro, “Multiobjective path planner for unmanned air vehicles (UAVs) based on genetic algorithms,” presented at the 8th Int. FLINS Conf., Madrid, Spain, 2008. [24] G. Farin, Curves and Surfaces for Computer Aided Geometric Design. A Practical Guide. New York: Academic, 1988. [25] D. A. V. Veldhuizen and G. B. Lamont, “Evolutionary computation and convergence to a pareto front,” in Proc. Genet. Program. Conf., 1998, pp. 221–228. [26] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and multiple constraint handling with evolutionary algorithms—Part I: Unified formulation,” IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 18, no. 1, pp. 26–37, Jan. 1988. [27] C. A. Coello-Coello and M. Salazar Lechuga, “MOPSO: A proposal for multiple objective particle swarm optimization,” presented at the Congr. Evol. Comput., Honolulu, HI, 2002. [28] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II,” in Proc. Parallel Problem Solving Nat. VI Conf., Berlin, Germany: Springer-Verlag, 2000, pp. 849–858. [29] J. Knowles, L. Thiele, and E. Zitzler, “A tutorial on the performance assessment of stochastive multiobjective optimizers,” Comput. Eng. Netw. Lab., ETH Zurich, Zurich, Switzerland, Tech. Rep. TIK 214, Feb. 2006. [30] P. T. Kabamba, S. M. Meerkov, and F. H. Zeitz, “Optimal path planning for unmanned combat aerial vehicles to defeat radar tracking,” J. Guid. Control Dyn., vol. 29, no. 2, pp. 279–288, Mar./Apr. 2006. [31] B. Andr´es-Toro, E. Besada-Portas, P. Fernandez-Blanco, J. A. Lopez-Orozco, and J. M. de la Cruz, “Multiobjective optimization of dynamic processes by evolutionary algorithms,” presented at the 15th Triennial World Congr. IFAC, Barcelona, Spain, 2002. [32] S. Esteban, B. Andr´es-Toro, E. Besada-Portas, J. M. Gir´on Sierra, and J. M. de la Cruz, “Multiobjective control of flaps and t-foil in high speed ships,” in Proc. 15th Triennial World Congr. IFAC, 2002, pp. 1–6. [33] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addison-Wesley, 1989. [34] T. W. McLain and R. W. Beard, “Coordination variables, coordination functions and cooperative-timing missions,” J. Guid. Control Dyn., vol. 28, no. 1, pp. 150–161, Jan./Feb. 2005. [35] R. Beard, T. McLain,M. Goodrich, and E. Anderson, “Coordinated target assignment and intercept for unmanned air vehicles,” IEEE Trans. Robot. Autom., vol. 18, no. 6, pp. 911–922, Dec. 2002. [36] Z. Jin, T. Shima, and C. J. Schumacher, “Optimal scheduling for refueling multiple autonomous aerial vehicles,” IEEE Trans. Robot. Autom., vol. 22, no. 4, pp. 682–693, Aug. 2006. [37] F. Borrelli, D. Subramanian, A. U. Raghunathan, and L. T. Biegler, “MILP and NLP techniques for centralized trajectory planning of multiple unmanned air vehicles,” in Proc. Amer. Control Conf., Jun. 2006, pp. 5763–5768. [38] D. Jian and J. Vagners, “Parallel evolutionary algorithms for UAV path planning,” in Proc. AIAA 1st Intell. Syst. Tech. Conf., 2004, pp. 1499–1506. [39] M. A. Darrah, W. M. Niland, B. M. Stolarik, and L. E. Walp, “Increased UAV task assignment performance through parallelized genetic algorithms,”Air Force Res. Lab., Dayton, OH, Tech. Rep. AFRL-VA-WPTP-2006-339, Aug. 2006. [40] D. Goldberg and K. Deb, “A comparative analysis of selection schemes used in genetic algorithms,” in Foundations of Genetic Algorithms. San Mateo, CA: Morgan Kaufmann, 1991, pp. 69–93. [41] H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables is stochastically larger than the other,” Ann. Math. Statist., vol. 18, pp. 50–60, Jan. 1947. [42] J. J. Rebollo, I.Maza, andA.Ollero, “A two step velocity planning method for real-time collision avoidance of multiple aerial robots in dynamic environments,”in Proc. 17th World Congr., Int. Federation Autom. Control, Jul. 2008, pp. 1–6. [43] T. Shima and C. Schumacher, “Assignment of cooperating UAVs to simultaneous tasks using genetic algorithms,” in Proc. AIAA Guid., Navigat., Control Conf. Exhib., Aug. 2005, pp. 15–18. [44] J. Tian, L. Shen, and Y. Zheng, “Genetic algorithm based approach for multi-UAV cooperative reconnaissance mission planning problem,”in Lecture Notes in Computer Science, vol. 4203. Berlin, Germany: Springer-Verlag, 2006, pp. 101–110. [45] D. Howden and T. Hendtlass, “Collective intelligence and bush fire spotting,”in Proc. Genet. Evol. Comput. Conf., 2008, pp. 41–48. [46] J. Tian, Y. Zheng, H. Zhu, and L. Shen, “A MPC and genetic algorithm based approach formultipleUAVs cooperative search,” in Lecture Notes in Computer Science, vol. 3801. Berlin, Germany: Springer-Verlag, 2005, pp. 399–404. [47] M. Russel and G. Lamont, “A genetic algorithm for unmanned aerial vehicle routing,” in Proc. GECCO, 2005, pp. 1499–1506. [48] E. Besada-Portas, J. A. Lopez-Orozco, and B. Andres-Toro, “A versatile toolbox for solving industrial problems with several evolutionary techniques,”in Evolutionary Methods for Design, Optimization and Control. Chapel Hill, NC: Univ. North Carolina Press, 2002, pp. 325–330. [49] E. Besada-Portas, J. A. Lopez-Orozco, and B. Andres-Toro, Evocom Toolbox Ver. 2.0, Spanish Registro Propiedad Intelectual Comunidad Madrid, Madrid, Spain, 16/2007/5293, 2004
dspace.entity.typePublication
relation.isAuthorOfPublication0acc96fe-6132-45c5-ad71-299c9dcb6682
relation.isAuthorOfPublication.latestForDiscovery0acc96fe-6132-45c5-ad71-299c9dcb6682

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
besadaportas03.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format

Collections