Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Large automorphism groups of bordered tori

dc.contributor.authorBujalance, E.
dc.contributor.authorCirre, F.J.
dc.contributor.authorGamboa Mutuberria, José Manuel
dc.date.accessioned2024-07-18T07:36:07Z
dc.date.available2024-07-18T07:36:07Z
dc.date.issued2024
dc.description.abstractWe study large groups of automorphisms of compact orientable bordered Klein surfaces of topological genus one. Here, large means that the order of the group is greater than or equal to 4(g−1), where g ≥ 2 is the algebraic genus of the surface. We find all such groups, providing presentations by means of generators and relations of them. We also determine which of these groups act as the full automorphism group of some bordered torus.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationBujalance, E., Cirre, F. J., & Gamboa, J. M. Large automorphism groups of bordered tori. J. Pure Appl. Algebra, 2024; 228:107757.
dc.identifier.doi10.1016/j.jpaa.2024.107757
dc.identifier.issn0022-4049
dc.identifier.urihttps://hdl.handle.net/20.500.14352/106835
dc.journal.titleJournal of Pure and Applied Algebra
dc.language.isoeng
dc.page.final107757-17
dc.page.initial107757-1
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordCompact bordered
dc.subject.keywordKlein surfaces
dc.subject.keywordNEC groups
dc.subject.keywordExtendability of group actions
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleLarge automorphism groups of bordered tori
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number228
dspace.entity.typePublication
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery8fcb811a-8d76-49a2-af34-85951d7f3fa5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gamboa_large_automorphism.pdf
Size:
454.9 KB
Format:
Adobe Portable Document Format

Collections