Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Weak compactness in Orlicz spaces of vector functions. (Spanish: Compacidad débil en espacios de Orlicz de funciones vectoriales).

dc.contributor.authorBombal Gordón, Fernando
dc.contributor.authorFierro Bello, Carmen
dc.date.accessioned2023-06-21T02:03:49Z
dc.date.available2023-06-21T02:03:49Z
dc.date.issued1984
dc.description.abstractThere is a well-known characterisation of the weakly compact subsets of L 1 -spaces—usually known as the theorem of Dunford. Using the fact that if 1<p<∞ , then L p ⊆L 1 while the dual of L 1 is dense in that of L q (we are assuming that the underlying measure space is a probability space), this immediately provides characterisations of the weakly compact subsets of L p -spaces or, more generally, of suitable Orlicz spaces. Since these L p -spaces are semireflexive, the weakly compact sets are just the closed, bounded ones. However, the same method can be applied to Bochner L p -spaces or Orlicz spaces (even in the absence of the Radon-Nikodým property in which case the dual spaces are not identifiable with the expected Bochner spaces). The authors use this fact to show that if the weakly compact subsets of such Bochner Orlicz spaces can be characterised in the "natural'' way, i.e. by carrying over the descriptions in the scalar case to the vector-valued case, then the same is true in L 1 . They then deduce from known results in the latter case that this is only the case when the functions take their values in a Banach space which, along with its dual, has the Radon-Nikodým property.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/18011
dc.identifier.issn0034-0596
dc.identifier.officialurlhttp://www.rac.es/ficheros/Revistas/REV_20091030_00885.pdf
dc.identifier.relatedurlhttp://www.rac.es/0/0_1.php
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64750
dc.issue.number1-2
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid
dc.language.isospa
dc.page.final163
dc.page.initial157
dc.publisherReal Academia de Ciencias Exactas, Físicas y Naturales
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordweak sequential completeness
dc.subject.keywordOrlicz space
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleWeak compactness in Orlicz spaces of vector functions. (Spanish: Compacidad débil en espacios de Orlicz de funciones vectoriales).
dc.typejournal article
dc.volume.number78
dcterms.referencesANDO, T. (1962): «Weakly compact sets in Orlicz spaces», Cañad. J. of Math., 14, 170- 176. BATT, J. (1974): «On weak compactness in spaces of vector-valued measures and Bochner-integrable functions in connection with the Radon-Nikodym property of Banach spaces», Rev. Raum. Math. Pures et Appi., XIX, 285-304. BoMBAL, F. (1981): «Sobre los espacios de Orlicz de funciones vectoriales», Collée. Math., XXXII, 3-12. BROOKS., J. K., y DINCULEANU, N. (1977): «Weak compactness in spaces of Bochner integrable functions and applications», Adv. in Math., 24, 172-188. DIESTEL, J., y UHL, J. (1977), «Vector Measures», Math. Surveys, n.° 15, Amer. Math. Soc., Providence, R.I. FIERRO, C. (1980): Compacidad débil en espacios defunciones y medidas vectoriales, tesis doctoral, Publicaciones de la Universidad Complutense. KRASNOSEL'SKII, M. A., y RUTICKH, YA. B. (1961): Convex functions and Orlicz spaces, Noordhoff Lts., Groningen. MONTAÑÉS, M. T. (1978): Espacios de Orlicz de funciones vectoriales. Dualidad, tesis doctoral, Universidad Complutense. ZAANEN, A. C. (1953): Linear Analysis, North-Holland Pub. Co., Amsterdam.
dspace.entity.typePublication
relation.isAuthorOfPublication376706a6-e2be-4670-b728-f591fb93582e
relation.isAuthorOfPublication.latestForDiscovery376706a6-e2be-4670-b728-f591fb93582e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bombal42.pdf
Size:
320.4 KB
Format:
Adobe Portable Document Format

Collections