Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Metal uptake by wetland plants: implications for phytoremediation and restoration

dc.contributor.authorPérez Sirvent, Carmen
dc.contributor.authorHernández Pérez, Carmen
dc.contributor.authorMartínez Sánchez, Maria José
dc.contributor.authorGarcía Lorenzo, María de la Luz
dc.contributor.authorBech, Jaume
dc.date.accessioned2023-06-17T22:23:27Z
dc.date.available2023-06-17T22:23:27Z
dc.date.issued2017
dc.description.abstractPurpose This study was undertaken to determine the feasibility of using three aquatic macrophytes, Phragmites australis, Juncus effusus and Iris pseudacorus, to phytoextract potentially toxic elements (PTEs) from a contaminated area by mining activities. Materials and methods An artificial pond was constructed with two topsoils (yellow and black samples) collected from Portman Bay. In order to simulate the mixing with carbonate materials, which naturally occurs in this area, a stabilisation approach was applied by mixing with 30 % of limestone filler. Three replicates of each type of soil have been prepared in pots for the selected species. The total PTEs content (arsenic, cadmium, copper, iron, lead and zinc) was determined and the bioconcentration factor (BCF) and transfer factor (TF) calculated. Results and discussion Soil samples showed high PTEs content as a result of mining activities. As regards the root contents, the PTEs is higher in yellow samples (YS) than in black ones, because in these samples the PTEs content that could be mobilised is higher. The BCF results were higher than unity for arsenic, copper, lead and cadmium for I. pseudacorus and P. australis growing on YS soil. Overall, copper and manganese showed a larger number of plants with BCF higher than unity. The PTEs content in leaves is low, and the TF results are lower than unity in almost all samples. Conclusions The results indicate that it is possible to use the selected species for hytostabilisation of soils contaminated with PTEs. J. effusus, P. australis and I. pseudacorus could be considered as tolerant, and natural or artificial wetlands containing these species could be used for remediation purposes.
dc.description.departmentDepto. de Mineralogía y Petrología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/46813
dc.identifier.doihttp://DOI 10.1007/s11368-016-1520-4
dc.identifier.issnPrint ISSN 1439-0108 ; Online ISSN 1614-7480
dc.identifier.officialurlhttps://link.springer.com/journal/11368/17/5/page/1
dc.identifier.relatedurlhttps://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18452
dc.issue.number5
dc.journal.titleJournal of Soils and Sediments
dc.language.isoeng
dc.page.final1393
dc.page.initial1384
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu552.1
dc.subject.keywordAcid mine drainage
dc.subject.keywordPhytostabilisation
dc.subject.keywordPhytoremediation
dc.subject.keywordPotentially toxic elements
dc.subject.keywordWetland
dc.subject.ucmPetrología
dc.titleMetal uptake by wetland plants: implications for phytoremediation and restoration
dc.typejournal article
dc.volume.number17
dspace.entity.typePublication
relation.isAuthorOfPublicationeaa7540f-1da5-415c-a340-11293d2fccbe
relation.isAuthorOfPublication.latestForDiscoveryeaa7540f-1da5-415c-a340-11293d2fccbe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Metal uptake by wetland plants.pdf
Size:
460.07 KB
Format:
Adobe Portable Document Format

Collections