Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A canonical connection associated with certain G -structures.

dc.contributor.authorSierra, José M.
dc.contributor.authorValdés Morales, Antonio
dc.date.accessioned2023-06-20T18:48:21Z
dc.date.available2023-06-20T18:48:21Z
dc.date.issued1997
dc.description.abstractLet P be a G-structure on a manifold M and AdP be the adjoint bundle of P. The authors deduce the following main result: there exists a unique connection r adapted to P such that trace(S iX Tor(r)) = 0 for every section S of AdP and every vector field X on M, provided Tor(r) stands for the torsion tensor field of r. Two examples, namely almost Hermitian structures and almost contact metric structures, are discussed in more detail. Another interesting result reads: for a given structure group G, if it is possible to attach a connection to each G-structure in a functorial way with the additional assumption that the connection depends on first order contact only, then the first prolongation of the Lie algebra of G vanishes
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22454
dc.identifier.doi10.1023/A:1022440104951
dc.identifier.issn0011-4642
dc.identifier.officialurlhttp://link.springer.com/content/pdf/10.1023%2FA%3A1022440104951.pdf
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58671
dc.issue.number1
dc.journal.titleCzechoslovak Mathematical Journal
dc.language.isoeng
dc.page.final82
dc.page.initial73
dc.publisherSpringer Verlag
dc.rights.accessRightsopen access
dc.subject.cdu514.7
dc.subject.keywordG-structure
dc.subject.keywordconnection
dc.subject.keywordnatural connection
dc.subject.keywordtorsion
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleA canonical connection associated with certain G -structures.
dc.typejournal article
dc.volume.number47
dcterms.referencesM.F. Atiyah, R. Bott, V. K. Patodi: On the heat equation and the index theorem. Inventiones Math. 19 (1973), 279-230. D.E. Blair: Contact manifolds in Riemannian geometry. Lecture Notes in Math., vol 509. Springer, Berlin, 1976. A. Ferrández, V. Miquel,: Hermitian natural tensors. Math. Scand. 64 (1989), 233-250. P. B. Gilkey: Local invariants of a pseudo-Riemannian manifold. Math. Scand. 36 (1975), 109-130. Victor Guillemin: The integrability problem for G-structures. Trans. Amer. Math. Soc. 116 (1965), 544-560. S. Kobayashi and K. Nomizu: Foundations of Differential Geometry I and II. Wiley, New York, 1963 and 1969. I. Kolár, P. Michor and J. Slovak: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. A. Valdés: Invariantes diferenciales del fibrado de las referencias proyectivas de una variedad diferenciable y el problema de equivalencia de E. Cartan asociado. Ph. D. Dissertation, Universidad Complutense de Madrid. 1994. A. Valdés: Differential invariants of R*-structures. Math. Proc. Camb. Phil. Soc. 119 (1996), 341-356.
dspace.entity.typePublication
relation.isAuthorOfPublication2ee189aa-d1f1-45ca-a646-7433de5952b9
relation.isAuthorOfPublication.latestForDiscovery2ee189aa-d1f1-45ca-a646-7433de5952b9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ValdesMo12.pdf
Size:
402.46 KB
Format:
Adobe Portable Document Format

Collections