A canonical connection associated with certain G -structures.
dc.contributor.author | Sierra, José M. | |
dc.contributor.author | Valdés Morales, Antonio | |
dc.date.accessioned | 2023-06-20T18:48:21Z | |
dc.date.available | 2023-06-20T18:48:21Z | |
dc.date.issued | 1997 | |
dc.description.abstract | Let P be a G-structure on a manifold M and AdP be the adjoint bundle of P. The authors deduce the following main result: there exists a unique connection r adapted to P such that trace(S iX Tor(r)) = 0 for every section S of AdP and every vector field X on M, provided Tor(r) stands for the torsion tensor field of r. Two examples, namely almost Hermitian structures and almost contact metric structures, are discussed in more detail. Another interesting result reads: for a given structure group G, if it is possible to attach a connection to each G-structure in a functorial way with the additional assumption that the connection depends on first order contact only, then the first prolongation of the Lie algebra of G vanishes | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22454 | |
dc.identifier.doi | 10.1023/A:1022440104951 | |
dc.identifier.issn | 0011-4642 | |
dc.identifier.officialurl | http://link.springer.com/content/pdf/10.1023%2FA%3A1022440104951.pdf | |
dc.identifier.relatedurl | http://link.springer.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58671 | |
dc.issue.number | 1 | |
dc.journal.title | Czechoslovak Mathematical Journal | |
dc.language.iso | eng | |
dc.page.final | 82 | |
dc.page.initial | 73 | |
dc.publisher | Springer Verlag | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 514.7 | |
dc.subject.keyword | G-structure | |
dc.subject.keyword | connection | |
dc.subject.keyword | natural connection | |
dc.subject.keyword | torsion | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | A canonical connection associated with certain G -structures. | |
dc.type | journal article | |
dc.volume.number | 47 | |
dcterms.references | M.F. Atiyah, R. Bott, V. K. Patodi: On the heat equation and the index theorem. Inventiones Math. 19 (1973), 279-230. D.E. Blair: Contact manifolds in Riemannian geometry. Lecture Notes in Math., vol 509. Springer, Berlin, 1976. A. Ferrández, V. Miquel,: Hermitian natural tensors. Math. Scand. 64 (1989), 233-250. P. B. Gilkey: Local invariants of a pseudo-Riemannian manifold. Math. Scand. 36 (1975), 109-130. Victor Guillemin: The integrability problem for G-structures. Trans. Amer. Math. Soc. 116 (1965), 544-560. S. Kobayashi and K. Nomizu: Foundations of Differential Geometry I and II. Wiley, New York, 1963 and 1969. I. Kolár, P. Michor and J. Slovak: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. A. Valdés: Invariantes diferenciales del fibrado de las referencias proyectivas de una variedad diferenciable y el problema de equivalencia de E. Cartan asociado. Ph. D. Dissertation, Universidad Complutense de Madrid. 1994. A. Valdés: Differential invariants of R*-structures. Math. Proc. Camb. Phil. Soc. 119 (1996), 341-356. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2ee189aa-d1f1-45ca-a646-7433de5952b9 | |
relation.isAuthorOfPublication.latestForDiscovery | 2ee189aa-d1f1-45ca-a646-7433de5952b9 |
Download
Original bundle
1 - 1 of 1