Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Butterflies and 3-manifolds. (Spanish: Mariposas y 3-variedades)

dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorTejada Jiménez, Débora María
dc.contributor.authorToro Villegas, Margarita María
dc.date.accessioned2023-06-20T10:36:33Z
dc.date.available2023-06-20T10:36:33Z
dc.date.issued2004
dc.description.abstractA butterfly is a 3-ball B with an even number of polygonal faces, named wings, pair-wise identified. Each identification between two wings is required to be a topological reflexion whose axis is an edge shared by the wings. The set of axes of the identifications is called the thorax of the butterfly. A knot K⊂S3 admits a butterfly representation if there is a butterfly B with thorax T such that, after the identifications, (B,T) is homeomorphic to (S3,K). In this paper it is shown that any 3-colorable knot admits a butterfly representation (B,T) such that the butterfly B has a 4-colored triangulation compatible with the 3-coloration of the knot. By a result of H. M. Hilden [Amer. J. Math. 98 (1976), no. 4, 989–997;] and J. M. Montesinos [Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 85–94;], one can associate to any 3-manifold a 3-colored knot. A corollary of the main result of the paper is therefore that one can associate to any 3-manifold at least one butterfly.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCOLCIENCIAS
dc.description.sponsorshipDIME
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22315
dc.identifier.issn0370-3908
dc.identifier.officialurlhttp://www.accefyn.org.co/revista/Vol_28/106/71-78.pdf
dc.identifier.relatedurlhttp://accefyn.org.co/sp/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50755
dc.issue.number106
dc.journal.titleRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
dc.language.isospa
dc.page.final78
dc.page.initial71
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturales.
dc.relation.projectID1118-05-13631
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordKnots
dc.subject.keywordFundamental group
dc.subject.keyword3-manifolds
dc.subject.keywordBranched coverings.
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleButterflies and 3-manifolds. (Spanish: Mariposas y 3-variedades)
dc.typejournal article
dc.volume.number28
dcterms.referencesG. Burde and H. Zieschang, Knots, Walter de Gruyter, New York, NY (1985). R. Crowell and R. Fox, Introduction to knot theory, Springer Verlag, New York, NY (1963). D. Farmer and Th. Stanford, Knots and Surfaces, Mathematical World, 6, American Mathematical Society (1995). R. Fox,A quick trip through knot theory,Topology of 3- Manifolds and related topics,Prentice-Hall,p.p.120-167 (1962). J. Goodman and H. Onishi, Even Triangulations of S3 and the coloring of graphs. Trans. Amer. Mat. Soc. 246 (1978), 501–510 . M. H. Hilden, 3-fold branched coverings of S3, Amer. J. of Math. 98 (1974), 989–997. M. H. Hilden, J. M. Montesinos, D. M. Tejada and M. M. Toro, Knots, Butterflies and 3-manifolds, preimpreso (2003). M. H. Hilden, J. M. Montesinos, D. M. Tejada and M. M. Toro, Butterflies, preimpreso (2003). I. Izmestiev and M. Joswig, Branched Coverings defined by Triangulations, por aparecer en Adv. Geometry, arXiv:math. L. Kauffman, On Knots, University Press, Princeton (1987). A. Kawauchi, A survey of Knot Theory, Birkhauser, Basel, Switzerland (1996). J. M. Montesinos, 3-manifolds as 3-fold branched covers of S3, Quart. J. Math. 27 (1976), 85–94. J.M.Montesinos,Sobre la conjetura de Poincaré y los recubridores ramificados sobre un nudo,Tesis Doctoral.Univ. Complutense de Madrid (1972). J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley Publishing Company, Inc. New York, N.Y. (1984). D. Rolfsen, Knots and links, Publish or Perish, Princeton (1985). H. Seifert and W. Threlfall, Old and new results on Knots, Canad. J. Math., 2 (1950), 1–15 . H. Seifert and W. Threlfall, A textbook of Topology,Academic Press., New York-London (1980). D. M. Tejada, Variedades,triangulaciones y representaciones, preimpreso (2003). W. Thurston,Three-Dimensional Geometry and Topology,Preprint (1990).
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
montesinos67.pdf
Size:
307.29 KB
Format:
Adobe Portable Document Format

Collections