Butterflies and 3-manifolds. (Spanish: Mariposas y 3-variedades)
dc.contributor.author | Hilden, Hugh Michael | |
dc.contributor.author | Montesinos Amilibia, José María | |
dc.contributor.author | Tejada Jiménez, Débora María | |
dc.contributor.author | Toro Villegas, Margarita María | |
dc.date.accessioned | 2023-06-20T10:36:33Z | |
dc.date.available | 2023-06-20T10:36:33Z | |
dc.date.issued | 2004 | |
dc.description.abstract | A butterfly is a 3-ball B with an even number of polygonal faces, named wings, pair-wise identified. Each identification between two wings is required to be a topological reflexion whose axis is an edge shared by the wings. The set of axes of the identifications is called the thorax of the butterfly. A knot K⊂S3 admits a butterfly representation if there is a butterfly B with thorax T such that, after the identifications, (B,T) is homeomorphic to (S3,K). In this paper it is shown that any 3-colorable knot admits a butterfly representation (B,T) such that the butterfly B has a 4-colored triangulation compatible with the 3-coloration of the knot. By a result of H. M. Hilden [Amer. J. Math. 98 (1976), no. 4, 989–997;] and J. M. Montesinos [Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 85–94;], one can associate to any 3-manifold a 3-colored knot. A corollary of the main result of the paper is therefore that one can associate to any 3-manifold at least one butterfly. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | COLCIENCIAS | |
dc.description.sponsorship | DIME | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22315 | |
dc.identifier.issn | 0370-3908 | |
dc.identifier.officialurl | http://www.accefyn.org.co/revista/Vol_28/106/71-78.pdf | |
dc.identifier.relatedurl | http://accefyn.org.co/sp/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50755 | |
dc.issue.number | 106 | |
dc.journal.title | Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. | |
dc.language.iso | spa | |
dc.page.final | 78 | |
dc.page.initial | 71 | |
dc.publisher | Academia Colombiana de Ciencias Exactas, Físicas y Naturales. | |
dc.relation.projectID | 1118-05-13631 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | Knots | |
dc.subject.keyword | Fundamental group | |
dc.subject.keyword | 3-manifolds | |
dc.subject.keyword | Branched coverings. | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Butterflies and 3-manifolds. (Spanish: Mariposas y 3-variedades) | |
dc.type | journal article | |
dc.volume.number | 28 | |
dcterms.references | G. Burde and H. Zieschang, Knots, Walter de Gruyter, New York, NY (1985). R. Crowell and R. Fox, Introduction to knot theory, Springer Verlag, New York, NY (1963). D. Farmer and Th. Stanford, Knots and Surfaces, Mathematical World, 6, American Mathematical Society (1995). R. Fox,A quick trip through knot theory,Topology of 3- Manifolds and related topics,Prentice-Hall,p.p.120-167 (1962). J. Goodman and H. Onishi, Even Triangulations of S3 and the coloring of graphs. Trans. Amer. Mat. Soc. 246 (1978), 501–510 . M. H. Hilden, 3-fold branched coverings of S3, Amer. J. of Math. 98 (1974), 989–997. M. H. Hilden, J. M. Montesinos, D. M. Tejada and M. M. Toro, Knots, Butterflies and 3-manifolds, preimpreso (2003). M. H. Hilden, J. M. Montesinos, D. M. Tejada and M. M. Toro, Butterflies, preimpreso (2003). I. Izmestiev and M. Joswig, Branched Coverings defined by Triangulations, por aparecer en Adv. Geometry, arXiv:math. L. Kauffman, On Knots, University Press, Princeton (1987). A. Kawauchi, A survey of Knot Theory, Birkhauser, Basel, Switzerland (1996). J. M. Montesinos, 3-manifolds as 3-fold branched covers of S3, Quart. J. Math. 27 (1976), 85–94. J.M.Montesinos,Sobre la conjetura de Poincaré y los recubridores ramificados sobre un nudo,Tesis Doctoral.Univ. Complutense de Madrid (1972). J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley Publishing Company, Inc. New York, N.Y. (1984). D. Rolfsen, Knots and links, Publish or Perish, Princeton (1985). H. Seifert and W. Threlfall, Old and new results on Knots, Canad. J. Math., 2 (1950), 1–15 . H. Seifert and W. Threlfall, A textbook of Topology,Academic Press., New York-London (1980). D. M. Tejada, Variedades,triangulaciones y representaciones, preimpreso (2003). W. Thurston,Three-Dimensional Geometry and Topology,Preprint (1990). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1