Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Improving English Foreign Language (EFL) Performance using Artificial Intelligence in Vocational Education and Training (VET)

dc.contributor.authorDe la Peña, Cristina
dc.contributor.authorRoda Segarra, Jacobo
dc.contributor.authorChaves Yuste, Beatriz
dc.date.accessioned2024-10-02T15:01:40Z
dc.date.available2024-10-02T15:01:40Z
dc.date.issued2024
dc.description.abstractInternationalisation is one of the strategies for improving the technical qualifications and employability of trainers in initial and continuing vocational education and training. It is based on the full development of linguistic competence in a foreign language such as English, which is influenced by various factors, including affective factors. Currently, one resource for detecting poor performance in English is artificial intelligence to the extent that it can predict academic performance. This research aims to predict performance in English as a foreign language based on affective variables such as willingness to communicate orally in English, self-efficacy and English language anxiety. The experimental result shows that the prediction model trained with a decision tree algorithm (J48) provides the best data for predicting performance in English in terms of accuracy = 0.74, precision = 0.70, recall = 0.678 and F-score = 0.68. Analysing the influence of the variables and eliminating the data for the affective variable willingness to communicate orally in English yields the best accuracy = 0.76. This finding has relevant practical implications for the early identification of underachievement in English and for personalising educational interventions to improve learning and performance in English as a foreign language among vocational education and training students.
dc.description.departmentDepto. de Estudios Ingleses: Lingüística y Literatura
dc.description.facultyFac. de Comercio y Turismo
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationDe-La-peña, C., Roda-Segarra, J., & Chaves-Yuste, B. (2024). Improving English Foreign Language (EFL) Performance using Artificial Intelligence in Vocational Education and Training (VET). Journal of Technical Education and Training, 16(1), 71-83. https://doi.org/10.30880/JTET.2024.16.01.006
dc.identifier.doi10.30880/JTET.2024.16.01.006
dc.identifier.officialurlhttps://publisher.uthm.edu.my/ojs/index.php/JTET/article/view/16594/6487
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108543
dc.issue.number1
dc.journal.titleJournal of Technical Education and Training
dc.language.isoeng
dc.page.final83
dc.page.initial71
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu821.111'243
dc.subject.keywordaffective variables
dc.subject.keywordArtificial intelligence
dc.subject.keywordEFL
dc.subject.keywordperformance
dc.subject.keywordVET
dc.subject.ucmHumanidades
dc.subject.unesco5701.11 Enseñanza de Lenguas
dc.titleImproving English Foreign Language (EFL) Performance using Artificial Intelligence in Vocational Education and Training (VET)
dc.typejournal article
dc.volume.number16
dspace.entity.typePublication
relation.isAuthorOfPublication5bba5a1d-d4e4-4892-9f33-264411cd96a8
relation.isAuthorOfPublication.latestForDiscovery5bba5a1d-d4e4-4892-9f33-264411cd96a8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
6.+71-83+16594.pdf
Size:
704.36 KB
Format:
Adobe Portable Document Format

Collections