Heisenberg limit for displacements with semiclassical states

dc.contributor.authorLuis Aina, Alfredo
dc.date.accessioned2023-06-20T10:57:39Z
dc.date.available2023-06-20T10:57:39Z
dc.date.issued2004-04-01
dc.description©2004 The American Physical Society. This work was supported by Project No. PR1/03-11630 of the University Complutense.
dc.description.abstractWe analyze the quantum limit to the sensitivity of the detection of small displacements. We focus on the case of free particles and harmonic oscillators as the systems experiencing the displacement. We show that the minimum displacement detectable is proportional to the inverse of the square root of the mean value of the energy in the state experiencing the displacement (Heisenberg limit). We present a measuring scheme that reaches this limit using semiclassical states. We examine the performance of this strategy under realistic practical conditions by computing the effect of imperfections such as losses and nonunit detection efficiencies. This analysis confirms the robustness of this measuring strategy by showing that the experimental imperfections can be suitably compensated by increasing the mean energy of the input state.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31433
dc.identifier.doi10.1103/PhysRevA.69.044101
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.69.044101
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51517
dc.issue.number4
dc.journal.titlePhysical review A
dc.language.isoeng
dc.page.final044101_4
dc.page.initial044101_
dc.publisherAmerican Physical Society
dc.relation.projectIDPR1/03-11630
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordQuantum nondemolition measurement
dc.subject.keywordPosition
dc.subject.keywordAtom
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleHeisenberg limit for displacements with semiclassical states
dc.typejournal article
dc.volume.number69
dcterms.references[1] Z. Y. Ou, Phys. Rev. A 55, 2598 (1997). [2] A. Luis and L. L. Sánchez-Soto, Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam, 2000), Vol. 41, p. 421. [3] A. Luis, Phys. Rev. A 65, 025802 (2002). [4] G. M. D’Ariano and M. F. Sacchi, Phys. Rev. A 52, R4309 (1995). [5] W. J. Munro, K. Nemoto, G. J. Milburn, and S. L. Braunstein, Phys. Rev. A 66, 023819 (2002). [6] C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, Rev. Mod. Phys. 52, 341 (1980); H. P. Yuen, Phys. Rev. Lett. 51, 719 (1983); M. H. Partovi and R. Blankenbecler, ibid. 57, 2891 (1986); M. Ozawa, ibid. 60, 385 (1988). [7] M. Brune, S. Haroche, V. Lefevre, J. M. Raimond, and N. Zagury, Phys. Rev. Lett. 65, 976 (1990); H. Paul, Quantum Opt. 3, 169 (1991). [8] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997). [9] H. P. Yuen and J. H. Saphiro, IEEE Trans. Inf. Theory IT-26, 78 (1980); B. Yurke, Phys. Rev. A 32, 311 (1985); T. Kim, Y. Ha, J. Shin, H. Kim, G. Park, K. Kim, T.-G. Noh, and Ch. K. Hong, ibid. 60, 708 (1999). [10] C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, Science 272, 1131 (1996).
dspace.entity.typePublication
relation.isAuthorOfPublicationb6f1fe2b-ee48-4add-bb0d-ffcbfad10da2
relation.isAuthorOfPublication.latestForDiscoveryb6f1fe2b-ee48-4add-bb0d-ffcbfad10da2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luis,A71libre.pdf
Size:
41.06 KB
Format:
Adobe Portable Document Format

Collections