Implementing semiclassical Szegedy walks in classical-quantum circuits for homomorphic encryption

dc.contributor.authorOrtega, Sergio A.
dc.contributor.authorFernández, Pablo
dc.contributor.authorMartín-Delgado Alcántara, Miguel Ángel
dc.date.accessioned2025-07-10T17:34:43Z
dc.date.available2025-07-10T17:34:43Z
dc.date.issued2025-05-15
dc.descriptionW911NF-14-1-0103. CT58/21-CT59/21. PRE2019-090517.
dc.description.abstractAs cloud services continue to expand, the security of private data stored and processed in these environments has become paramount. This work delves into quantum homomorphic encryption (QHE), an emerging technology that facilitates secure computation on encrypted quantum data without revealing the underlying information. We reinterpret QHE schemes through classical-quantum circuits (CQC), enhancing efficiency and addressing previous limitations related to key computations. Our approach eliminates the need for exponential key preparation by calculating keys in real-time during simulation, leading to a linear complexity in classically controlled gates. We also investigate the T/T dagger-gate complexity associated with various quantum walks, particularly Szegedy quantum and semiclassical algorithms, demonstrating efficient homomorphic implementations across different graph structures. Our simulations, conducted in Qiskit, validate the effectiveness of QHE for both standard and semiclassical walks. The rules for the homomorphic evaluation of the reset and intermediate measurement operations have also been included to perform the QHE of semiclassical walks. Additionally, we introduce the CQC-QHE library, a comprehensive tool that simplifies the construction and simulation of CQC tailored for QHE. Future work will focus on optimizing classical functions within this framework and exploring broader graph types to enhance QHE applications in practical scenarios.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades(España)
dc.description.sponsorshipU.S.ArmyResearch Office
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipBanco de Santander
dc.description.sponsorshipMinisterio para la Transformación Digital y de la Función Pública (España)
dc.description.statuspub
dc.identifier.citationSergio A Ortega et al 2025 J. Phys. Complex. 6 025010
dc.identifier.doi10.1088/2632-072x/add3aa
dc.identifier.issn2632-072X
dc.identifier.officialurlhttps://doi.org/10.1088/2632-072x/add3aa
dc.identifier.relatedurlhttps://iopscience.iop.org/article/10.1088/2632-072X/add3aa
dc.identifier.urihttps://hdl.handle.net/20.500.14352/122421
dc.issue.number2
dc.journal.titleJournal of physics-complexity
dc.language.isoeng
dc.page.final025010-26
dc.page.initial025010-1
dc.publisherIOP Publishing
dc.relation.projectIDPID2021-122547NB-I00
dc.relation.projectIDMADQuantum-CM
dc.relation.projectIDQUANTUM ENIA
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordQuantum computation
dc.subject.keywordQuantum communication
dc.subject.keywordHomomorphic encryption
dc.subject.keywordQuantum algorithms
dc.subject.keywordQuantum walks
dc.subject.ucmFísica (Física)
dc.subject.unesco2212 Física Teórica
dc.titleImplementing semiclassical Szegedy walks in classical-quantum circuits for homomorphic encryption
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number6
dspace.entity.typePublication
relation.isAuthorOfPublication1cfed495-7729-410a-b898-8196add14ef6
relation.isAuthorOfPublication.latestForDiscovery1cfed495-7729-410a-b898-8196add14ef6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ortega_2025_J._Phys._Complex._6_025010.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format

Collections