Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Phylogeographic reconstructions can be biased by ancestral shared alleles: The case of the polymorphic lichen Bryoria fuscescens in Europe and North Africa

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

John Wiley & Sons
Citations
Google Scholar

Citation

Boluda CG, Rico VJ, Naciri Y, Hawksworth DL, Scheidegger C. Phylogeographic reconstructions can be biased by ancestral shared alleles: The case of the polymorphic lichen Bryoria fuscescens in Europe and North Africa. Molecular Ecology 2021;30:4845–65. https://doi.org/10.1111/mec.16078.

Abstract

Large phylogeographic studies on lichens are scarce, and none involves a single spe-cies within which different lineages show fixed alternative dispersal strategies. We investigated Bryoria fuscescens (including B. capillaris) in Europe and western North Africa by phenotypically characterizing 1400 specimens from 64 populations and genotyping them with 14 microsatellites. We studied population structure and genetic diversity at the local and continental scales, discussed the post- glacial phylogeogra-phy, and compared dispersal capacities of phenotypes with and without soralia. Our main hypothesis is that the estimated phylogeography, migration routes, and dispersal capacities may be strongly biased by ancestral shared alleles. Scandinavia is geneti-cally the richest area, followed by the Iberian Peninsula, the Carpathians, and the Alps. Three gene pools were detected: two partially linked to phenotypic characteristics, and the third one genetically related to the American sister species B. pseudofusces-cens. The comparison of one gene pool producing soredia and one not, suggested both as panmictic, with similar levels of isolation by distance (IBD). The migration routes were estimated to span from north to south, in disagreement with the assessed glacial refugia. The presence of ancestral shared alleles in distant populations can explain the similar IBD levels found in both gene pools while producing a false signal of panmixia, and also biasing the phylogeographic reconstruction. The incomplete lineage sort-ing recorded for DNA sequence loci also supports this hypothesis. Consequently, the high diversity in Scandinavia may rather come from recent immigration into northern populations than from an in situ diversification. Similar patterns of ancestral shared polymorphism may bias the phylogeographical reconstruction of other lichen species.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections